REXX User's Guide

BIM-GSS

I

agement Collection" ¢

Version 5 Release 3A

—
CSI
INTERNATIONAL

Copyright © 2006 by Connectivity Systems, Incorporated
All Rights Reserved

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
the restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

This material contains confidential and proprietary material of
Connectivity Systems, Inc. and may not be used in any way
without written authorization from Connectivity Systems, Inc..
This material may not be reproduced, in whole or in part, in
any way, without prior written permission from Connectivity
Systems, Inc..

Permission is hereby granted to copy and distribute this
document as follows:

Each copy must be a complete and accurate copy.

All copyright notices must be retained.

No modifications may be made.

Use of each copy is restricted to the evaluation and/or
promotion of Connectivity Systems, Inc.’s BIM-GSS
product or in accordance with a license agreement.

REXX User’s Guide, Version 5 Release 3A
November 2006

Published by Connectivity Systems, Inc.
8120 State Route 138, Williamsport OH 43164
Phone: 800-795-4914 Fax: 740-986-6022

E-Mail: help@e-vse.com

Internet; http://www.e-vse.com

mailto:tcpinfo@e-vse.com
http://www.e-vse.com/

Contents

About This Guide

PUIPOSE ... s ATG-1
OrganizZation ..o e ATG-1
GSS PUDLICALIONS......oovininiiiiciiiic s ATG-2
Related PUDLICAtionscccociiiiiniiiniiiiiii s ATG-2
Diagnostic PrOCEAUTIESc.cccoiriririririeieicicieicitter ettt eaeaes ATG-2
Collecting Diagnostic Datacccccevrririririeieiiiciiiiiinrreeeee e ATG-3
Interpreting Diagnostic Data..........cccccocoiniiiiiiiiiniiiicccces ATG-3
Calling Technical SUPPOTtccovverieueieueiciiiirr e ATG-4

Chapter 1: Using the REXX Editor and Compiler

REXX OVEIVIEW ..ottt 1-1
What Is REXX?...coiiiiiiiiiiiiiiii s 1-1
USING REXX ...ttt 1-1
SDL/SVA REQUITEMENLES.........c.cueuemimiiiiriririeieieteieieieetee st seve s ss e nenenes 1-1
Running REXX Procedures from JCL.......c.cocovriiiieiiiiiiiinrrreeeeceeeceeseseeees 1-2
Enabling REXX PrOCEAUTIESc.cceueueuiuiirinirirerieieieeieieieee et esnnes 1-2

Enabling FAQSAQ ..ottt et 1-2
Running FAQSAQ ..o 1-3
Running FAQSVSPO ..o 1-3
Defining the Application IDcccccocoiiinnnnniccccceee e 1-3
Terminating FAQSAOQO ..o 1-3
Terminating BIM-FAQS/ ASO ...ttt 1-3

Initializing the FAQSAQO REXX PrOCESSOTcovvveveveueieieiiireiiinesiniseeieeieseieveneiseneseseseseenes 1-4
Accessing the ASO IMOD Initialization Directory List..........ccccccoeeeeeiininnnnnnnns 1-4

IMOD Configuration SCIEETN.........c.cveueueueueueueiiiiirerreeteteteteieieee st 1-5
Accessing the IMOD Configuration SCreemn............ccccuvurrerirueuereueuereurrnirinenseeeeenenenes 1-5

Editing REXXIMODScccoeiviiiiiiiiiiiiiiisi s ssssssssns 1-6
REXX IMOD File Directory LiSt......cccccccoirrrrririeieicieeiiieiinseeeeeeieieneieeeeesesesesesenes 1-6
Accessing the REXX IMOD File Directory List........cccccoeeeenrnneereieeceiienenenenens 1-7
Actions on the REXX IMOD File Directory List.........ccccceerrrrreeereieecciininnennees 1-8

REXX IMOD EditOr SCIEmMcccvviviiiimiiiiiiiiiiiiiini s 1-9
REXX IMOD FOIrmatcccooiiiiiniiiiiiiiiiiiiiiiicccc e 1-9

Editing on the REXX IMOD EditOr SCIeemc.ceveueueuimiiininirineeierereicieieieeenesereseeeenes 1-10

REXX User's Guide

Overtyping Data.........ccccovviiiiiiiiiiic e 1-10

Entering Commands in the Prefix Area...........cccocoviiiiiiiiiiicccccccee 1-11
Prefix-Area COmMmMAaNS..........ccooviriiiiiiiiiiiiicec e 1-11
CC, DD, and MM COmMMANAS......ccoooritieeeieeeeeeee et eeeeeeeeeeeeeeeseeeesesesaeesesreeeessseesanns 1-12
C#, CC, M#, and MM CommaAandsS..........ccceeeeeeueeeeeeeieeeeeeeeeeeeeeeeeeeeeeeaeeesesreeessseeeesens 1-12
Entering Command-Line Commands............ccccovurriiiiiiiiininiiccccccccceeeaes 1-12
Basic COmMMANS..........cccuiuiiiiiiiiic s 1-13
A oo 1-13
BaCkWard OF Up ...ccouciiiiiiiciiecerenceeeeeetteneee ettt 1-13
Bottom OF TOP......ccooiiiiii s 1-14
CASE....oiiitcc s 1-14
CRANGE. ... 1-15
DELELE ...ttt 1-15
DOWN OF NEXt ..o 1-16
FILE ..ottt 1-17
SAVE ..o 1-17
SEATCIL. ... s 1-17
Advanced Commands............cccoviiiiiiiii e 1-19
= (RECAIL) ottt 1-19
DUPLCALE ...t 1-19
FFILR.....oooiiiiiiieit e 1-20
GET e 1-20
INPUL ottt s 1-21
Overlay COIUMIN........ciiiiiiiiiccc s 1-21
PSS 1-22
QUIL e 1-22
SSAVE.....oiiie e 1-23
TAB .o 1-23
Using PF Keys While Eiting.........cccccocciiiiiiiniiiccccccececceeeaes 1-24
OVerview Of PE KeYS ..o 1-24
Detailed Summary of PEF Keys ... 1-25
Compiling the REXX IMODccccooiiiiiiiiiiiiiccec e 1-27
Saving an IMOD..........ccccoiviiiic s 1-27
Filing an IMODcciiiiiiiiiiiccc e s 1-27
Determining the Member/User Name............cccocoecuiiiiiniininniiececcccccneeeenes 1-28
Performing Error Processing............cooevviiiiiieiiiiiiiiiinnicccccccccccecsesees 1-28

Chapter 2: REXX Language

OVEIVIEW ...ttt e et e e et e e eeaee e e e et eeeeaeeeeeaseeeensneseeesseeeeeseeeeensseeeensneesennneeeenn 2-1
REXX INSEIUCHONS ... eeae e e e e et e e eeanaeeeeaeeeeenaneeeennns 2-1

i GSS

REXX FUNCHONS......ooiiiiieeceeee e et et eeearee e e e e eeteeeeenreeeennnneas 2-1

USer FUNCHONS ..o 2-2
Using Online Helpc.coiiiiiiiiiiccc e 2-3
DITECt HEIP oottt 2-3
Accessing Online Help from REXX IMOD Editor.........cccooviiiiiiiiiiiniiinneens 2-4
Accessing Additional Help from Help Screen...........cccccovviiiiiiciiiinininnnns 2-5
BIM REXX HEIP MENUooveuiiiiiiiieiciieiciieeteereceteeeseiee et 2-6
FUNCHON HEIP ..ottt 2-7
REXX General USAGEcccccuiiiiiiniiiiiicicicciicieeeeee et 2-8
COMIMENES ... s 2-8
SYINDOLS ... 2-8
SEIINGS oo 2-8
BiNary SHINESc.ooviviiiiiiiiicc s 2-9
Hexadecimal SEIINEScccovviiiiiiiiiiiiiiiiircce e 2-9
EXPIESSIONS ...ttt sttt 2-9
ASSIGNIMENES.oiviiiiiiicc s 2-9
REXX OPEIALOLSoviuiiiiiieiiicieiieeeertcte e 2-10
Prefix OPeTatorscccoeueeirieuiririeieirieeireeetrteeesre ettt ettt 2-10
BOOlean OPerators..........ccvvueeriereiniieiieieireeieeeeetree ettt 2-10
Algebraic Operators...........ccoviiieiiieiiiiiiii e 2-10
COMPATALOLS ..ot 2-10
VaTTabIes ..o 2-11
SImple Variables.........c.ociiiieninieeeeeeee et 2-11
Stem Variablesccoiiiiiii e 2-11
Stem Variable AsSIGNMENts............ccovuviririiiriiiiiiiiiineeeccces 2-12

Global Variables ..o 2-12
Global Stem Variables ... 2-12
How Arguments Are Passed ... 2-13
Default Argument Passing Method..............cccocoooiiiiiiiis 2-13

If a Message Triggered an IMODccccccociiiininniiiicccccccenees 2-13

If a Command Triggered an IMOD ... 2-14

If an SMSG Triggered an IMODcooiiiiiiiiiiiincceccceees 2-14
Differences Between BIM REXX and IBM REXXccccoveirneinneenneeneecneeeceene 2-15
INTERPREToooiiiiiiiiiiecee et 2-15
Loop Control Variables ...t etseeseesseneeseenenes 2-15
Lab IS ... 2-15
SIGNAL ... 2-16
MAX and MIIN ..o 2-16
SYIMDOLS ..o 2-16
TRACES ...t 2-16
C2D. e 2-17

REXX User's Guide

UPPER ..ottt ettt sttt ettt e et et e eseasaessesaensessensassesseeseansensensensenes 2-17
DATE ..ottt ettt ettt b et e b e e st ese e st e s b e st ens e se et e ereeneeseestenaenes 2-17
DUMPSTG ...ttt ettt ettt et et esa et e s e sessessesseessessensensessensenns 2-17
Performance HINESccoviviiirieieiecieeese sttt sttt ss e ssesse st eseeseesaennens 2-18
GlODAl VariabIes.........ccveieiiieieieiesieeeeeetet ettt ssessa e essessessensensens 2-18
SEEM VATIADIEScviciieiieeieieieee ettt sttt b s st sesneesnennensenes 2-18
ASSIgNMENTES = VS =7 ..ot 2-18
LONG StHNGS.....ooviiiiiiiiiiccc s 2-18
SUBSTR ..ottt ettt ettt ettt sttt e e s e s e s e sseeseeseessensensensessensessensaeseensenes 2-18
INUINIDETS ...ttt ettt ettt et e et e et et e e seeseeseestessessensensesseasenssessensansenes 2-18
L0101 00 <3 =SSR 2-19
o £= X1 <1010 1S3 01 =TSSR 2-19
ATITRMELIC TEEIMS ..ttt ss e se s e e seeseessensensenes 2-19

Chapter 3: REXX Instructions

ADDRESS environment <CoOmMmAand>..........c.ccceueuecireuininieeirinneinrereeriereeseeneeseeseesnenesennes 3-1
ARG teMIPIALE ...ttt 3-2
RESULT ...ttt 3-2
CALL function <eXpression<,eXpression™...>........ccccveerreirereernnerisesreresesneneessereessenens 3-3
DO s 3-3
DROP ...t s 3-5
EXIT <@XPIESSIONoouiriiiiiiiieiitiieeetereet ettt st eene 3-6
TE s 3-6
ITERATE <SYMDOL> ... 3-7
THEN ..o s 3-7
ELSE ... 3-8
LEAVE <SYMDOL> ..o 3-8
INOP .o 3-9
INUMERIC ..ot 3-9
OTHERWISE. ..ottt 3-9
PARSE ... s 3-10
PROCEDURE <expose <(> variable list <)> >cccccoevivmiirniiniinecneeeneeenees 3-11
PULL ..o 3-11
PUSH ..o 3-12
QUEUE ... 3-12
RETURN ...ttt 3-12
SAY e 3-13
SELECT ..ot 3-14
SIGNAL ..ot 3-14

iv GSS

TRACE All/Commands/Error/Fail/Intermediate/Labels/Normal/Off/ Results...3-15

Chapter 4: REXX ADDRESS Environments

ADDRESS AO ... s 4-1
ADDRESS CARDoouiiiiiiiiiiiiicc s 4-3
ADDRESS CICS.......ooiiiiiiiiiiiicc st 4-4
ADDRESS CONSOLE.........cciiiiiiiiiiince s s 4-5
ADDRESS DISK ... s 4-5
ADDRESS EPIC ...ttt 4-6
ADDRESS EVENT ..ot 4-8
ADDRESS EXPLOREcooiiiiiiiiiiiniiiin s 4-9
ADDRESS OUTPUT ..ot s 4-13
ADDRESS PDATE.......ccooiiiiiiiiiii s 4-14
ADDRESS PDS ... 4-15
ADDRESS POWER ..ot 4-16
ADDRESS PROGRAMooiiiiiiiiiiiiiicc s 4-17
ADDRESS SCHEDULEc.cooiiiiiiiiiiiiiiccs s 4-18
ADDRESS SYS ... 4-19

Chapter 5: REXX Functions

ABBREV (pattern,string,length)............cccccccoioiiiiiiiicccecccccene 5-2
ABS(IUMDET) ..ottt ettt st 5-3
ADDRESS(() oottt et 5-4
ARG (SN<,0PHOMDD) ottt ettt st ane 5-5
ASOENV () ettt et ettt 5-6
BITAND(string1,string2,pad)ccccciiiiininniniiiiececcneee e 5-7
BITOR(string1,string2,pad)........cccccccuiiiiiiiiniiiiicicicccccceeeee e 5-8
BITXOR(string1,string2,pad)cccceiiiiininiiiiiiceccceeeeee e 5-9
B2C(DINary-String).......cceiiiiiiiiriiiiiccccccc e 5-10
B2X(DINAIY-StrINg)cvviiiiiiiiiiiiicecccc e 5-11
CENTER(string length<,pad>)........cccccccciiiiiiiiiniiiiceeeeecccceenes 5-12
CENTRE(string length<,pad>)......c.ccccccceiiiiiiiiniiciicceeeeecceseaas 5-13
CLUSTER(PATIIIS) ...eeuvveeiniieiiietenieerereeeteneeeresesessesesessesestssesestssesesesaesestssenestssssesessesesessenens 5-14
COMPARE(string1,string2,pad)ccccceiiiininiiiniiiiiciiccnnceeeeecccceseeeeenas 5-15
COPIES(SIIANE, M) ...ttt 5-16
CP(CIMA,ASIS) .ttt 5-16

REXX User's Guide v

CPUID() oooooeeeeeeeeee e eeeoeeeeeeee e eeeeseeeeee oo eeeeseeeee e 5-18

C2D(SHINESII>) oo 5-18
C2X(SELINIE) «.vvvvvrieicieici e 5-19
DATATYPE(StHNG S, EYPO™) o 5-19
DATE(<option<,date<, B’ >>>)cccooiiiieiiiiieeieeeeeereeee et 5-21
DELSTR(string,n<length™>)cccccccoiiiiiiiiiiicccccc e 5-22
DELWORD(string,n,Jength)ccccccoiiiiiiiiiiiieccccccccceereseseeeeenes 5-23
DIGITS() ceveveeeneeriririreeieieieteieitit ettt beb ettt sttt sttt ettt bbb bt sene e s 5-23
D2C(NUMDET,II>) ..ottt sttt ne et nene e 5-24
D2X(NUMDEI,11>) ..ottt sttt et s ene e 5-25
ERRORTEXT(1) ..ttt sttt sttt ettt nees 5-25
FIND(SEING G ..ot s 5-26
FORMU() cttetetetettitittntntntst ettt ettt sttt ettt es 5-27
FORMAT (number,<integer>,<decimal>)..........cccccceceiriiiinnnnniiiccccccnrees 5-27
FUZZ() ettt ettt ettt ettt bbbttt 5-29
GETVIS(PIA) wovvvtiiiiiineninirieeeeteet ettt ettt bbbttt 5-29
INDEX(haystack,needle,start).............ccccovivriiiiiiiiiiiinnecccccccccsseeeees 5-31
INSERT (new,target, <n>,<length>,<pad>)........ccccccceoeiiiiininnnnniiiicccccees 5-32
JOBACCT(PIA) ..ttt sttt bbbt ettt bbbttt sasaenene 5-33
JOBACCT('CPU") / JOBACCT(PAG') .ettrtriririririerereieieitttntrereseseeieteieieitesesesesessesenenenenes 5-34
JOBINAME(PIA) c.tutiiverereieieiiiitririnenteteeeteieieieettsese sttt bttt sttt bbbttt sasaenenen 5-35
JUSTIFY (string,length,pad)cccccccoiiiiiiiiicccccceeee e 5-36
LASTPOS(needle,haystack,start)cccococeiiiiniininiiiciiiiiiccncececccccceeees 5-37
LEFT(string, length,pad)ccccoviiiiiiiiiiiicccccr s 5-38
LENGTH(SEINE) «.evuvviiiiieicicicciiirreccie e 5-39
LIBR(FUNCHON, PATINIS) ..ottt ettt aene e seene s nees 5-40
LINESIZE().ttt seteseiebeses ettt sttt bbbttt sttt bbbt senenees 5-40
LISTCAT(PATINS) c..eervreeirereniieieieieretriereestetestee et seere e st saeseseeeresesaese e e enesesessenenenenenees 5-41
MAX(NUMDBET,NUMDET,...) .ottt 5-41
MESSAGE (<pid>,<count>,<scan>,<Start™)c.cccccvreirrerirrnreireneenenreeesrereesnenenennen 5-42
MIN (NUMDET,NUMDET,...) ..oceiiiiiieiiiieiieceec ettt 5-43
MSG(IMEA,SEATES) ..ttt 5-44
OVERLAY (new, tgt,<n>,<len>,<pad>)ccccccovrrrnniiiiiiiiiinneeeeeeeeceecees 5-45
PHASE(PIA) ..ttt ettt sttt sttt bbbt es 5-46
PIDLIST(SEYPE) ettt ettt nens 5-47
POS(needle,haystack,Start)cccoveiiueiciiiiiinicccccccr s 5-48
POST(EVEINL) ...ttt ettt e n et 5-49
POWER (<queue>,<jobname>,<class™)cccccovrrriririeiiiiiiiiininieeeeeneecccseseees 5-49
PWRCMD(CINA) .ttt ettt ettt bbbt nees 5-51
QUEUED() ettt ettt ettt bbbttt sttt bbbttt es 5-52
RANDOM(Min,max,S€€d)c.cccvueuiririereirieiiiniereinieieenieretreereeeereseseeseesessesesessenesesaeneneas 5-52

vi GSS

READCONS(SAAA)ooovoeeeeeee e oeeeeeeeeeeeee s oeoeeeeeeeee e 5-54

REPLID(PI) ..ttt ssesesseaenenen 5-55
REVERSE(SETING)evvviiiiiecieieieieirisicecieiene ettt sses e nenen 5-56
RIGHT (string,len, pad)..........cccooiiiiiiiiincccccccrrse e 5-56
SESSION(AIZS)vuvuvevremememimimeiiiisiseseeeetete et 5-57
SIGN(NUIMDET) ...ttt ne 5-58
SOURCELINE(SI>) ..ttt et ss e seas e senenenns 5-58
SPACE(String,n,pad) ..o 5-59
STATUS(PIA) vttt 5-60
STRIP(String,0ption,Char).........cccocouiuiiiuiiiiiiiiiiircceccc e 5-61
SUBSTR(string,start<,end><pad>)........cccccccerririiiiiiiinnnnceeececcceseenes 5-62
SUBWORD(string,n<,length>) ... 5-63
SYMBOL(SYINDOL) ...ttt ettt 5-63
TIME(OPLION) ...cuvveiiiieiiieieiieieereeteeee ettt ettt ettt aen e sane 5-64
TRANSLATE(string, tblo,tbli,pad) ... 5-65
TRUNC(NUMDET /11>) ..ttt ettt st ee 5-65
USERID() vttt sttt 5-66
VALUEMamMe<,NEWVAIUES)coveuiiiiieiiiieiieieieeeciereeeereee et saene 5-67
VERIFY (string,ref<,MatchNomatch>,<start>)..........ccccccovvnnnniiiiiiiiiiiniins 5-68
VSAM(fUNCHON, PATINS) ...eeuvviiirieiieieiiieretieteee ettt sne et sne e enene 5-69
VSSPACE(PAIIINS) . .eovevieirerenieeiiinreretreeieesreretsaesest et se et saene et saesesessenenesanne 5-69
VTAM('CIMA",SEIMES) ..ttt ene et 5-70
WWATT(SEE) ettt ettt ettt s et s s e n et saeneaea 5-71
WORD(SEIINE). ...t 5-72
WORDINDEX(SEINZ,) ...ttt se s senesseseasesaes 5-73
WORDLENGTH (SEING 1) ...ttt sseseaceeaen 5-73
WORD POS(string, target<,start)............cccceeuciiiiinniiieeecccccrrreeeeee s 5-74
WORDS(SEIING) ..ot 5-75
XRANGE(StArt,enid)cccoveveirieiiiieiciriecinecreee ettt sene 5-75
X2B(RSTLINE) .o 5-76
X2C(RSELINE) .. 5-76
X2D(SEIING M) oot 5-77

Appendix A: Sample REXX IMODs

SAMPLE IMODS......cooiiiiiiciirietectrte ettt ettt A-1
BADDRESS.......cooiiieerrr ettt A-1
BARG A-1
SBEEPASO ..ottt A-1
BCICSRED ...ttt A-1
BCMSRERD ...ttt A-1

REXX User's Guide vii

BCP et A-2
BCPUUSE ...ttt A-2
BOYCLE ...ttt A-2
BDIC ettt A-2
BEOYJ et A-2
BGETVIS ...ttt A-2
BJODB .ot A-3
BJOBACCT ...ttt A-3
BJOBINAME ...ttt A-3
BJOBINRED ...ttt A-3
BJOBTIME ..ottt A-3
BLOG ..ttt ettt A-4
BIMESSAGE ...ttt A-4
BIMISG ...t A-4
BINODESET ..ottt ettt e A-4
BPA .t A-4
BPHASE ...ttt A-5
BPOST ...ttt A-5
BPOWGET ...ttt et A-5
FPWRECMD ..ottt et et A-5
BT et es A-5
BREADCON......oiiiiiieieirerritee ettt A-5
BREPLIDoovitiiiiiicieieirr et A-6
BREPLY ...ttt A-6
BSCRIPT ...ttt A-6
BSTATUS. ...ttt A-6
BSUBMIT ...ttt A-6
BTO et A-6
BVTAM ..ottt A-7
SADDRESS Sample IMODccccoviiiiiiiiicinicieieeeieiesseeieeseeeee et A-7
SARG Sample IMOD ...ttt A-8
$BEEPASO Sample IMODccccooiiiiieiicieeicieicie e senes A-9
SCICSREP Sample IMOD ...ttt A-11
$CMSREP Sample IMOD ...ttt A-12
$CONSOLE Sample IMOD.........cccccoiueiimiieiiiciricieieicieeeeieetiessesesessseeae s sesaesenssae A-14
BCP Sample IMOD ...ttt A-14
$CPUUSE Sample IMOD ...ttt A-15
SCYCLE Sample IMOD.........coiiiiiiieieiiicieieieteeieie sttt A-17
$DC Sample IMOD ...ttt A-21
SEOJ Sample IMOD ...ttt A-21

viii GSS

SGETVIS Sample IMOD ..ottt nens A-22

$JOB Sample IMOD ...ttt nens A-24
$JOBACCT Sample IMODc.cccuiiiiciiiiciricieireeiee et eeeaees A-24
$JOBNAME Sample IMOD........cccccouiiiriiciicieiteieiiieieeieeeieis e eeaees A-26
$JOBNREP Sample IMOD...........ccccouieiriiiiicieieieisicieesteieeseese et saees A-27
$JOBTIME Sample IMODc.ccoeuiiiriicinicieiicieetieieeeieesseese e saes A-29
SLOG Sample IMOD........ccoiiicieierriiccceerer ettt nens A-29
$SMESSAGE Sample IMODcccouieiriiciicieitieieitieieieieseesseeee et seaees A-29
BMSG SaMPLE IMODooiieiiieiieiririceeeie ettt sesesees A-30
$NODESET Sample IMODc.cccuiiiriiciicieiieieitieieeeiees et saes A-31
SPA Sample IMOD.......coiiieieiiinecee ettt A-32
$PHASE Sample IMODcccoiiiiiieiriieiicieteieeie ettt A-34
BPOST Sample IMODc.coiiirnriririeieieieicieicttr ettt sttt es A-36
$POWGET Sample IMOD ..ot seeaees A-36
$PWRCMD Sample IMOD.........cocciiiiiiiieiicieieieieecieestie e escaees A-39
QT Sample IMOD ...ttt nens A-39
$SREADCON Sample IMOD..........ccccoiiriieiniiieiieeieitieteeeieesseese e seees A-40
$REPLID Sample IMOD.........ccooiiiiieiiciriicisicieiseieie et secaens A-40
$REPLY Sample IMOD........ccccovuiiiieiniciicicisicieieecie ettt sacaees A-40
$SCRIPT Sample IMODc.coiiiiiiiiiiciieicieicieireeie et eaees A-41
$STATUS Sample IMOD ...ttt ceees A-45
$SUBMIT Sample IMODc.oiiiiiiiicirieicieicieisecieeeie e sacaees A-46
$TO Sample IMOD ...ttt et nens A-47
SVTAM Sample IMODccoiirniiieeieieicicittererentses ettt sttt sees A-47
SWAIT Sample IMOD ...ttt eeees A-48
SWAKEUP Sample IMOD ...ttt seeees A-48

Glossary : Basic Terms

Index

REXX User's Guide ix

X

GSS

About This Guide

Purpose

Organization

The About This Guide chapter describes the organization of the GSS REXX
User’s Guide, and provides a summary of each of the documents that complete
the GSS documentation set.

The GSS REXX User’s Guide describes how to use the REXX editor and compiler
and explains the REXX language, instructions, and functions. Sample IMODs
are also included.

The following summarizes the outline of this manual.

Chapter 1, Using the REXX Editor and Compiler, provides basic information about
REXX, explains how to enable the REXX processor, and discusses basic and
advanced REXX commands.

Chapter 2, REXX Language, discusses REXX general usage, and its operators and
variables. Also discussed is how to use the online help.

Chapter 3, REXX Instructions, explains each REXX instruction, including its
purpose and an example.

Chapter 4, REXX Address Environments, discusses the environments in which
REXX commands are processed, including syntax and operands for each

command.

Chapter 5, REXX Functions, explains REXX functions. A sample program is
included for each function.

Appendix A, Sample REXX IMODs, presents some examples of REXX IMODs.

REXX User's Guide ATG-1

GSS Publications

GSS Publications

The GSS user library consists of the following documents.

Guide Description

CPR User’s Guide Explains how to configure, initiate, and maintain BIM-
CPR. It also explains how to create definitions and use
BIM-CPR’s online panels as well as how to issue print
commands from BIM-FAQS/ ASO.

Message Guide Contains error messages that are generated by the GSS.
The messages are grouped by program, and each
message includes a reason and corrective action.

REXX User’s Guide Describes how to use the REXX editor and compiler. It
also defines the REXX language, instructions,
ADDRESS environments, and functions.

Installation and Utilities Describes the procedures for installing GSS in a VSE
Guide environment.

Related Publications

Other manuals may have the information you are looking for. Additional
information about the REXX language can be found in the following IBM
manuals:

=TSO Extensions REXX User's Guide

m TSO Extensions REXX Reference

» VM System Product Interpreter User's Guide

= VM System Product Interpreter Help

Additional information about the REXX language can also be found in M. F.

Cowlishaw’s The REXX Language: A Practical Approach to Programming (Prentice-
Hall). M. F. Cowlishaw is the author of the REXX language

Diagnostic Procedures

Refer to the table below for a summary of the procedures you should follow if
you have a problem with a CSI software product. Each of these procedures is
detailed on the following pages.

ATG-2 GSS

Diagnostic Procedures

Step Action

1 Categorize the problem and collect data. See “Collecting
Diagnostic Data.”

2 Try to identify the problem. See “Interpreting Diagnostic
Data.”

3 Collect diagnostic data and call support. See “Calling Technical
Support.”

4 Work with Technical Support to solve the problem.

Collecting Diagnostic Data

In the table below, use the left column to categorize the problem your site has
encountered. Then, follow the instructions in the corresponding right column to
generate useful diagnostic data.

For Be Sure to Check

Installation errors All output produced by MSHP when the product
was installed.

Screen errors Copies of the screens in error. .

Interpreting Diagnostic Data

After collecting the specified diagnostic data, write down answers to the
following questions:

What was the sequence of events prior to the error condition?

What circumstances existed when the problem occurred and what action
was taken?

Has this situation occurred before? What was different then?

Did the problem occur after a particular PTF was applied or after a new
release of the software was installed?

Was a new release of the operating system installed recently?

Has the hardware configuration (tape drives, disk drives, and so forth)
changed?

REXX User's Guide 0-3

Diagnostic Procedures

From the answers to these questions and the diagnostic data, try to identify the
cause and resolve the problem. If it is determined that the problem is a result of
an error in a CSI software product, contact CSI Technical Support.

Calling Technical Support
CSI International provides support for all its products.
If you are in North America, call 800-795-4914. Outside North America, call
your local CSI Software Agent. You can also reach CSI Technical Support online

at help@e-vse.com.

Please have the following information ready before contacting CSI Technical
Support:

o All the diagnostic information described in "Collecting Diagnostic Data."
Product name, product code and release number.

e Product name and release number of any other software you suspect is
involved.

e Release level and PUTLEVEL of the operating system.
¢ Your name, telephone number and extension (if any).

Your company name

ATG-4 GSS

Chapter 1
Using the REXX Editor and Compiler

This chapter introduces the REXX language and explains how to use the REXX
editor and compiler.

REXX Overview

What Is REXX?

Using REXX

REXX is a programming language. BIM describes REXX as an OAL (Operations
Automation Language). REXX provides a simple and structured environment
for elevating your automated operations to new levels. As a result, you can
interface with the system console, VM, POWER, VTAM, CICS, BIM-FAQS/PCS,
BIM-EPIC, CA-EXPLORE for VSE, and other products.

The BIM implementation of REXX is used to create Intelligence Modules
(IMODs) and to execute them automatically within ASO. You use the REXX
editor to create and modify the IMODs.

Additionally, you can initiate and run REXX IMODs in many environments. For
example, an IMOD can be run as a batch job using BIMSRXBA or PCSBAT. You
can also run REXX as part of JCL in a library PROC member. BIM-FAQS/PCS
and BIM-FAQS/ ASO users can run REXX IMODs using the FAQSAO task. The
FAQSAO task can run IMODs on behalf of other BIM products through:

= the Global Event Manager (GEM)
s an BIM-FAQS/PCS event or command

= SMSG to VSE, console commands, online screens, and console messages
(with BIM-FAQS/ ASO)

= HTTP (CCI) interface

» Buffer interface

SDL/SVA Requirements

The following phases need to be in the SVA before REXX can be used through
FAQSAO:

$FAQS,SVA
$FAQSAO, SVA

REXX User's Guide 1-1

Enabling FAQSAO

These will automatically be placed into the SVA if GSFTL FAQS is run during
IPL. For more information on GSFTL, see the BIM-FAQS/ ASO User's Guide.

Running REXX Procedures from JCL

You can run a REXX program from a VSE library procedure by using // EXEC
PROC=procedure, where procedure is a REXX program beginning with a comment
in columns 2-80. The REXX program is compiled and executed at execute proc
time. Any data that is pushed to the stack is executed as JCL after procedure
termination. For proper execution, the JCL should be pushed in LIFO order. For
example:

// EXEC LIBR

AC S=DCMLIB.330

CATALOG REXXSAMP.PROC REPLACE=Y
/* rexx comment */

PUSH */**

PUSH "INCLUDE $LISTDIR"
PUSH "FORECAST" DATE("0%)
PUSH *// EXEC PCSEVRP*

PUSH "// EXEC GSFAQS*™

PUSH *// PAUSE"

PUSH ** THIS IS A TEST JCL*®

/+

/*

Enabling REXX Procedures

To enable support for executing REXX procedures, you must execute the
following JCL to place the JOB control hooks:
// EXEC BIMSUTIL

ENABLE REXXPROC
/*

Enabling FAQSAO

If you want to execute BIM-FAQS/ASO REXX IMODs through events, SMSGs,
console commands, online commands, console messages, browser requests, and
buffer requests, the FAQSAO task must be active in a partition. The FAQSAO
task can run as a main task or as a subtask of a long-running job such as
POWER, VTAM, CICS, or BIM-FAQS/PCS’s JCLSCHED.

1-2 GSS

Enabling FAQSAO

Running FAQSAO

The FAQSAO task is used to multitask IMODs for BIM-FAQS/ ASO and BIM-
FAQS/PCS. Other BIM products may schedule IMODs to run GEM. If you are
running BIM-FAQS/PCS, FAQSAO is automatically attached as a subtask of the
scheduler.

To run FAQSAO as a main task, use the following JCL statement:

// EXEC FAQSAO, SIZE=FAQSAO

If BIM$TIDR, FAQSVMYX, or FAQSIUX is running, Don't run FAQSAO in the
same partition, if possible. Use BIM$UTTS to subtask FAQSAO, if necessary.

Running FAQSVSPO

FAQSVSPO is a VTAM Secondary Programmable Operator used to issue VTAM
commands and retrieve the results in a REXX IMOD for processing. FAQSAO
and FAQSVSPO must run in the same partition, but they don’t have to run
under VTAM. The following JCL enables FAQSAO and FAQSVSPO using
BIMS$UTTS. For more information on BIM$UTTS, see the GSS Installation and
Utilities Guide.

// EXEC BIMSUTTS, PARM="FAQSAO#FAQSVSPO"

Defining the Application ID

You must add the application ID for the FAQSVSPO task to run. Add the
following statement to your VBUILD command list:

FAQSVSPO APPL AUTH=(SPO)

Terminating FAQSAO

To terminate the FAQSAOQO task, use the AO SHUTDOWN command.

Terminating BIM-FAQS/ASO

To terminate BIM-FAQS/ ASQO, use the following procedure.
1. Execute the AO SHUTDOWN command to terminate the FAQSAO task.

2. Use the GSFAQS DISABLE AO command to terminate the SMSG and AR
hooks.

REXX User's Guide 1-3

Initializing the FAQSAO REXX Processor

Initializing the FAQSAO REXX Processor

When the FAQSAO task is initialized, the AOINIT IMOD is executed. AOINIT
looks for initialization and configuration data for a particular CPU ID or a
default file of *. Initialization and configuration data is defined on the ASO
IMOD Initialization Directory List.

Accessing the ASO IMOD Initialization Directory List

From the BIM-FAQS/ASO Initialization and Configuration Menu, select the
REXX IMOD Initialization and Tailoring option (option R) to display the ASO
IMOD Initialization Directory List.

FAOMENUI .R ** BIM-FAQS/ASO Online V5.2x ** ID=TECHVSE.SJA
===>
** BIM-FAQS/ASO - IMOD Initialization Dir List ** Key ==> * <=
CPUID :
_* Purge=Yes Search=MON, Limit=20000
_ DEVTST2 Purge=Yes Search=CPR,MON Limit=20000 IMOD=$ARG
_ DEVTSYS3 Purge=Yes Search=CPR,MON Limit=20000 IMOD=$ARG

X=Edit L=Delete A=Add

PF1=Help PF3=Return PF4=Refresh

Sample ASO IMOD Initialization Directory List

The Action and PF-Key Functions are discussed next.

Action/PF Key Function

A Add a REXX IMOD Initialization

L Delete a defined REXX IMOD Initialization
X Edit a defined REXX IMOD Initialization
PF1 Access help information for this screen
PF3 Return to the previous screen

PF4 Refresh the current display

1-4 GSS

IMOD Configuration Screen

IMOD Configuration Screen

Accessing the IMOD Configuration Screen

CPUID

Purge

Ext Dmp

From the ASO IMOD Initialization Directory List, use the action codes to access
the IMOD Configuration Screen.

For example, to edit a specific initialized CPU ID, enter X in the input field next
to the desired CPU ID to display the IMOD Configuration screen for that CPU.
You can alter information by typing over existing information; then press PF5 to
save.

To add a new initialized CPU ID, enter A in the input field next to any CPU ID.
A blank IMOD Configuration screen is displayed, shown next.

FAOMENUI .M ** BIM-FAQS/ASO Online V5.2x ** ID=TECHVSE.SJA
===>
** BIM-FAQS/ASO -- IMOD Configuration ** CPUID ==> VSE <==
CPUID ==> * <== CPUID or VM ID or use * for any CPU
Purge Queue (X) Purge any IMODs in queue at initialization

Extended Dump () Produce extended dumps on abend
Trace/Say exit () Use MSG not MSGNOH on SMSG initiated IMODS.

Instruction limit
Imod search chain

20000 Number of REXX instructions to allow
MON , PDS IMOD search order xxx,MON or MON,xxx

Auto IMOD Execution:
Imod Data

PF1=Field level Help PF3=Return PF5=Save

Sample IMOD Configuration Screen

The fields are discussed next.

The CPU ID or VM machine name where the FAQSAOQO task is initiated. The
CPU ID "' allows the file to be loaded on any CPU if a matching CPUID or VM
machine name is not found. The CPU ID can be modified on the screen to enable
you to copy an entry to a new or existing file.

Indicates whether or not AOINIT purges outstanding IMODs queued for
execution when FAQSAO is initialized.

Indicates whether or not extended dumps are on when FAQSAO is initialized.
Ext Dmp should be off unless requested by BIM Technical Support.

REXX User's Guide 1-5

Editing REXX IMODs

Limit

Imod search chain

IMOD

Indicates the number of REXX instructions to allow in an IMOD execution.
Setting a limit enables you to prevent loops that can be coded in an IMOD.
When the limit is reached, the IMOD is canceled. If this field is set to *, infinite
loops can be coded.

Specifies PDSs to search for IMODs. A maximum of two PDSs can be specified
as search targets.

MON is the default.

BIM-FAQS/ ASO searches the specified PDSs in the order in which they appear
in this search chain. For example, specifying Imod search chain=CPR, MON
means that the SYS$CPR PDS is searched first, then the SYS$MON PDS.

Indicates one or two IMODs to initialize. You can pass optional data to the
IMODs.

Editing REXX IMODs

REXX IMQOD File Directory List

Starting from the REXX IMOD File Directory List, you can create REXX IMODs
using the REXX language. For details on the REXX language, see Chapter 2,
“REXX Language.”

1-6 GSS

Editing REXX IMODs

Accessing the REXX IMOD File Directory List

Key ==> <==

PDS==>

Select the REXX IMOD Directory option from either the BIM-FAQS/ ASO Main
Menu or the BIM-FAQS/PCS Main Menu, and the REXX IMOD File Directory

List is displayed.

FAOMENUR.R

=—==>

** BIM-FAQS/ASO Online V5.2x **

** BIM-FAQS/ASO -- REXX IMOD File Directory List **

IMOD NAME
_ $$LVARGT
$SLVARSV
— $ADDRESS
_ $ARG
~ $BEEPASO
$BEEPDGT
— $BEEPDRR
~ $BEEPDSC
~ $BEEPDSK
~ $BEEPD1
— S$BEEPER
$CALLTIM
~ $CHKPDS
$CICS

_ $CICSREP

RECORDS

174
242
38
39
94

UPDATE TIMESTAMP COMPILE
11/26/97 08.38.09 11/26/97
11/26/97 08.38.14 11/26/97
11/19/97 15.44.40 11719797
11/19/97 15.44.21 11719797
11/19/97 15.44.24 11/19/97
11/19/97 15.44.30 11/19/97
11/19/97 15.44.26 11719797
11/19/97 15.44.28 11719797
11/19/97 09.53.46 11/19/97
11/19/97 15.44.25 11/19/97
11/26/97 08.38.19 11/726/97
11719797 15.44.32 11719797
11/26/97 08.38.25 11/26/97
11/26/97 08.38.31 11/26/97
11/19/97 15.44.36 11719797

E=Execute X=Edit L=Delete R=Rename C=Copy

P=Print

PF1=Help PF3=Return PF4=Refresh PF5=Add PF8=Fwd

ID=TECHVSE.SJA

Key ==> * <==
PDS ==> MON <==

TIMESTAMP Compiled
08.38.10 *
08.38.14
15.44.40
15.44.22
15.44.25
15.44 .31
15.44.27
15.44.29
09.53.46
15.44 .26
08.38.20
15.44.32
08.38.25
08.38.32
15.44.36

% o X ok kX % b X X %}

Sample ASO IMOD Initialization Directory List

The REXX IMOD File Directory List Fields are discussed next.

Criteria to display members. * alone displays all members. * as a wildcard
replaces one or more characters in a member name. ? as a wildcard replaces one

character.

PDS to search for REXX IMODs.

If you have accessed this screen from the Console Command Definition panel or
the Console Action Definition panel, you may need to change this value to reflect
the actual location of the PDS you want to edit or execute.

REXX User's Guide 1-7

Editing REXX IMODs

_ (input field)

IMOD NAME

RECORDS

UPDATETIMESTAMP

COMPILE TIMESTAMP

Compiled

Action to perform against the IMOD:

Edit Edits the IMOD

Delete Deletes the IMOD

Rename Renames the IMOD

Copy Copies an IMOD. Use this command to add IMODs by

modifying the newly created IMOD.
Print Submits the IMOD for a batch print job.

Name of the IMOD. An IMOD is an extended command that is written to
respond to system actions and to execute specific actions.

Number of lines in the IMOD.

Date and time the member was last updated.

Date and time the member was last compiled.
Whether or not the IMOD is compiled. An * indicates it is compiled.

Here are the REXX IMOD File Directory List PF Keys:

PF Key Function

PF1 Displays online help for this screen

PF3 Returns to BIM-FAQS/ ASO Main Menu
PF4 Refreshes the list when you add an IMOD
PF5 Adds a new REXX IMOD

PF8 Displays the next screen of the list

PF7 Displays the previous screen of the list

Actions on the REXX IMOD File Directory List

You can use the REXX IMOD File Directory List to delete, add, edit, or execute a
REXX IMOD.

To execute an IMOD, type E next to the IMOD name and press Enter.

1-8 GSS

REXX IMOD Editor Screen

To delete an IMOD, type L next to the IMOD name and press Enter.

To add an IMOD, press PF5 (Add) to display the FAQS/ASO IMOD ADD
screen. Enter the IMOD name you want to add and press Enter.

To select an IMOD for editing, type X in front of the IMOD name, or just place
the cursor next to the name and press Enter. This takes you to the editor (REXX
IMOD Editor screen).

REXX IMOD Editor Screen

The REXX IMOD Editor screen is displayed after you have selected the name of
an IMOD to edit from the REXX IMOD File Directory List.

As shown on this screen, the display of an existing IMOD consists of:

= A command line at the top of the display (=>)

72-character lines used to define the particular IMOD

= A prefix area (=====)

=>

1...5...10...15...20...25...30...35...40._
*xx*BEGIN FILE®X*==

MEM=$CICS LINE=0

.45...50...55..

.60...65...70...75...8

/

/*
/>
/*
/>
/*
/>
/*
/>
/*
/>
/*
/>
/*
/>
/*
/>
/*
/>
/*
/>

$CICS - REXX IMOD that utilizes the PCS "address cics" environment.*/

This IMOD communicates with a pre-specified CICS partition.

All CEMT command except for P SHUT are permitted.

In addition to

CEMT commands one may also initiate any non terminal oriented
transaction.

Parameters accepted by this IMOD are:

argl - partition ID of the CICS to communicate with.
it will default to F2
arg2 - any valid JCLBCICS command.

1T omitted

Four different types of

commands are permitted:

a:

b:
Cc:
d:

Note: The

CEMT command
OPEN filename
CLOSE filename
START tranid

(except perform shutdown)

transaction JCLR must be active in the CICS partition.

*/
*/
*/
*/
*/
*/
*/_

*

Sample REXX IMOD Editor Screen

REXX IMOD Format

The first line of a REXX IMOD must begin with a comment line to identify the
program as a REXX IMOD. A comment begins with /* and ends with */.

REXX User's Guide 1-9

Editing on the REXX IMOD Editor Screen

The sample REXX IMOD Editor screen above uses the first several comment
lines to describe the IMOD and the remaining lines to define REXX commands.

Columns 73-80 (Prefix Area)

Prefix area

Columns 73-80 are the prefix area of the REXX IMOD Editor Screen. The prefix
area can display the following.

Five equal signs (=====). This is the default. You can enter commands in the
prefix area when it displays equal signs.

Relative-sequence number

User record data

Blank

A relative-sequence number beginning with 1. The relative-sequence number
can be used in the GET command to designate only a portion of the IMOD
member. You can enter commands in the prefix area when it displays relative-
sequence numbers.

Column 80 of user data is never displayed. It is used for the screen-attribute
character.

You cannot enter commands in the prefix area when it is blank.

numbers, and blank.

Editing on the REXX IMOD Editor Screen

There are four ways to edit a REXX IMOD member:
= Overtype existing data lines

= Enter prefix-area commands

= Enter command-line commands

= Use PF keys

Overtyping Data

You can overtype existing data to add command lines. The Input command
enters a full-screen entry mode. You stay in input mode until you press Enter
without any alterations.

1-10 GSS

Entering Commands in the Prefix Area

By default, columns 1-72 of the member are displayed as data lines on the
display. If the prefix area is not used, columns 1-79 are displayed. Column 80
cannot be changed because it is used for the screen-attribute character.

On a display, all visible positions can be altered and overtyped. Positions not
visible cannot be changed unless a tab forces the entered data into the invisible
area.

You can also place the cursor on any character on the screen and use the 3270
character DELETE, INSERT, and REPLACE features.

Entering Commands in the Prefix Area

The area on the right of the REXX IMOD Editor screen (columns 73-80) displays
either equal signs or the relative-sequence number of the line. This area is the
prefix area. The prefix area provides a convenient means of entering line-editing
commands. From the prefix area, you can enter as many commands as you have
lines of data showing before pressing Enter.

If relative-sequence numbers are displayed instead of equal signs (=====),
commands must be left-justified and preceded by a number identifier. You can

overtype the relative-sequence numbers.

Commands entered in the prefix area can be prefixed or suffixed with a number
to affect multiple lines.

Prefix-Area Commands

To edit in the prefix area, you can use the following prefix-area commands:

Command Function

A# Adds # blank lines after this current line.

C# Copies # lines, starting with this current line.

D# Deletes # lines, starting with this current line.

F Moves/ Copies lines, starting with the line after this

current line.

M# Moves # lines, starting with the current line.

REXX User's Guide 1-11

Entering Command-Line Commands

P Moves/Copies lines, starting with the line before this
current line.

/ Makes this line the TOP line.

“

Duplicates this current line.

CcC Defines first or last lines of block to copy.
DD Defines first or last lines of block to delete.
MM Defines first or last lines of block to move.

CC, DD, and MM Commands

The CC, DD, and MM commands apply to all lines delimited by the two lines
that contain the command. For example, if lines four and eight contain DD in
their command areas, lines four through eight are deleted.

C#, CC, M#, and MM Commands

The C#, CC, M#, and MM commands require a command that indicates where to
move or copy the lines. The command is either P or F. P moves or copies the
defined lines before the designated line. F moves or copies the defined lines
after the designated line.

Entering Command-Line Commands

The command line is the first line of the display. Commands entered on the
command line are more flexible than prefix-area commands.

There are two types of command-line commands: basic commands (used for
screen editing) and advanced commands (used for editing and adding IMOD
members). Both types of command-line commands are described in the
following sections.

The help screen (accessed by entering HELP) lists the basic command-line
commands.

1-12 GSS

Basic Commands

Basic Commands

Add

Purpose

Syntax

Usage Notes

Example

Backward or Up

Purpose

Syntax

Adds blank lines in a member.

Add# or A# or #Add or #A

represents the relative number of lines to add. If a number is omitted, one is
assumed.

The command entered in the command line alone adds the blank lines after the
first line shown on the screen.

A2 or 2A entered on the command line adds two lines to the member. For
example, if a / is placed in line 31's prefix area, two blank lines are added on
lines 32 and 33.

Moves backward in a member one or more lines.

U# or #U

represents the relative number of lines to move. If a number is omitted, one (1)
is assumed.

REXX User's Guide 1-13

Basic Commands

Usage Notes

Example

Bottom or TOP

Purpose

Syntax

Case

Purpose

Syntax

Usage Notes

The screen moves backward the specified number of lines from the current top
line.

U2 and 2U move backward two lines. U20 is the same as pressing PF7 on a Mod
2 terminal.

The Bottom command displays the END FILE line as the first (and only) line on
the screen. The TOP command displays the first line of a member as the first
screen line.

BOT/TOP

Flips the current case setting. The editor is normally in uppercase/lowercase
mode, and does not translate what is entered.

CASE

If you enter the CASE command, the editor translates all lowercase to uppercase.
Enter the command again, and the lowercase characters remain the same.

This command is useful when entering all uppercase data, such as programs, on
a terminal that supports both uppercase and lowercase.

1-14 GSS

Basic Commands

Change

Purpose

Syntax

Usage Notes

Example

DELete

Purpose

Locates and modifies specific text in a member.

C/search_string/replacement_string/**

Slashes delimit the command, the search string, the replacement string, and the
asterisks are optional.

If no asterisks are specified, then only the first occurrence starting at the current
line or the last change is performed.

If a single asterisk is specified, the first occurrence on each line is changed,
starting at the current line or the last change that was performed.

If double asterisks are used, then all occurrences of the search string are
changed, beginning with the current line or the last change that was performed.

The search and replacement strings do not have to be the same length. The
replacement string can be null.

If you omit the asterisks, only the first occurrence of the search string is changed.
The top line of the screen becomes the line on which the search string is found.
The first occurrence of the search string is displayed on the top line.

C/3380/3390/* changes the first occurrence of 3380 to 3390 on each line.

Deletes one or more lines from a member.

REXX User's Guide 1-15

Basic Commands

Syntax

Usage Notes

Example

Down or Next

Purpose

Syntax

Example

DEL# or #DEL

represents the relative number of lines to delete. If a number is omitted, one
(1) line is assumed.

Lines are deleted, beginning with the first line shown on the screen or with the
line pointed to by a slash (/) in the prefix area.

If the number of lines supplied is more than the number of lines remaining in the
file, all remaining lines are deleted.

DELS3 deletes three lines, starting with the current line.

Moves forward in a member one or more lines.

D# or N# or #D or #N

D and N synonymous. # represents the relative number of lines to move. If the
is omitted, one (1) line is assumed.

7N moves the screen forward seven lines. 20N is the same as pressing PF8 on a
Mod 2 terminal.

1-16 GSS

Basic Commands

FILE

Purpose

Syntax

Usage Notes

SAVE

Purpose

Syntax

Usage Notes

Search

Purpose

Accomplishes the following;:
= Saves the file to the member shown after MEM=.
= Compiles the file, creating an executable IMOD.

s Exits the REXX editor

FILE <member_name>

Optionally, specify a member name to save the file to a new member. Use FFILE
to save the file to an existing member other than the one shown after MEM=.

Saves the file to the member shown after MEM=.

SAVE <member_name>

Optionally, specify a member name to save the file to a new member. Use
SSAVE to save the file to an existing member other than the one shown after
MEM-=.

Locates specific search strings.

REXX User's Guide 1-17

Basic Commands

Syntax
S/search_string/

Usage Notes

If the data specified in the search string is located, the line where it is found is
made the first line on the screen and the cursor is placed at the beginning of the
line. If the search string is not found, the screen remains unchanged and a
message displays. The CASE setting determines whether the scan is uppercase
only, or uppercase and lowercase.

Example

S/3330/ gets the first occurrence of 3330. You can also enter /3330/ or /3330.

1-18 GSS

Advanced Commands

Advanced Commands

= (Recall)

Purpose

Syntax

Usage Notes

DUPlicate

Purpose

Syntax

Usage Notes

Recalls and executes the last-executed command.

The recalled command is not displayed on the command line, and the command
line is cleared for the next screen.

Duplicates lines on a screen.

DUP

A slash in the prefix area can be used to mark the line to duplicate.

REXX User's Guide 1-19

Advanced Commands

FFile

Purpose

Syntax

Usage Notes

GET

Purpose

Syntax

Examples

Usage Notes

FFILE accomplishes the following: saves the file to an existing member other
than the one shown after MEM=, compiles the file creating an executable IMOD,
and exits the REXX editor.

FFILE <member_name>

The file is saved to either the member you specify with the command, or the
member specified with the last SAVE or SSAVE command.

Inserts data from another member.

GET member_name<,start,count>

GET TEMP inserts an entire member named TEMP.

GET PAUSE,?2,4 inserts lines 2-6 from the PAUSE member.

The specified member can be another member or a member of other source
library books.

The start and count values are optional. If present, they specify the first line to
insert and the number of lines to insert. Data is inserted after the current line or,
if the cursor is positioned in the data area, after the cursor line.

1-20 GSS

Advanced Commands

Input

Purpose

Syntax

Usage Notes

Overlay Column

Purpose

Syntax

Usage Notes

After using the GET command, you must supply a member name for any of the
save or file functions.

Like the ADD command, inserts new lines into a member. Input places the
editor in full-screen entry mode.

Input

The editor displays the cursor at the top of the screen and fills the remainder of
the screen with blank lines. Add lines by typing over the blank lines with new
data.

Each time you press Enter, the editor displays the last line entered at the top of
the screen and again fills the screen with blank lines. To restore the normal

display, press Enter. You can also press Enter one last time without altering any
data on the screen to exit insert mode.

Replaces one or more characters in a statement.

OCnn cccc

nn is the desired column number (1-80) and cccc are the characters to store on top
of that column.

Position the cursor on the desired statement and press Enter. Overlay column is
the only way to alter column 80 of a statement.

REXX User's Guide 1-21

Advanced Commands

PDS

Purpose

Syntax

Usage Notes

Quit

Purpose

Syntax

Usage Notes

Selects a specific PDS to be accessed as the current library. The default PDS for
IMOD storage is PDS=MON.

PDS=xxx
xxx is the filename of the PDSVSE dataset.
PDS=CUA$nnn

nnn is the device address to which the CMS minidisk is linked.

The filename must be defined in either a standard label job execution, or in the
JCL used to initiate the partition where the editor is running for the PDS=xxx
dataset.

For CMS minidisk access, the CMS minidisk must be linked to a VSE disk with
the same device characteristics, and the device must also be DVCUPed by VSE.

Exits the editor without saving the member being edited.

Quit

If the member has been altered, a message displays, and you have to type QUIT
again to force exit.

To exit the editor immediately without this message, enter QQ.

1-22 GSS

Advanced Commands

SSAVE

Purpose

Syntax

Usage Notes

TAB

Purpose

Syntax

Usage Notes

Saves the file to an existing member other than the one shown after MEM=.

SSAVE <member_name>

The file is saved to either the member you specify or the member specified with
the last SAVE or SSAVE command.

Sets up to 10 tabs on a screen. A T displays wherever a tab is set.

TAB t,nn,nn,nn, ...

Tab character t can be any character. Tab settings nn must be entered in
ascending numerical sequence.

At least one tab position must be entered. To clear the tab settings, enter TAB
CLEAR.

REXX User's Guide 1-23

Using PF Keys While Editing

Using PF Keys While Editing

PF keys allow you to issue certain commands while using the REXX IMOD
function. PF-key values described next are the system defaults.

To view the current PF-key settings for REXX IMOD displays, enter HELP while
editing (X=Edit) a REXX IMOD.

Overview of PF Keys

The PF-key functions listed next are available by pressing the designated key or
by entering PF and the key number. If you enter PF11 NEWNAME on the
command line, the current member is stored in the default library as

NEWNAME.
PF Key Function
PF1/13 Help
PF2/14 Toggle prefix area on/ off
PF3/15 Exit
PF4/16 Unused
PF5/17 Unused
PF6/18 Recall previous command
PF7/19 Scroll back page
PF8/20 Scroll forward page
PF9/21 Repeat previous command
PF10/22 Unused
PF11/23 Save file (make permanent update)
PF12/24 Submit file as jobstream

1-24 GSS

Using PF Keys While Editing

Detailed Summary of PF Keys

The following table describes the defined PF-key settings in more detail. If you
have 24 PF keys, keys 13-24 correspond exactly to keys 1-12.

PF Key

Function

PF1

Displays the Help screen. Press Enter to return to the
editor.

PF2

Turns the prefix area on and off. The area to the right
of the screen that normally contains five equal signs
(=====) is called the prefix area. The prefix area can
be all equal signs (the default) or the relative line
number of the member being viewed. It can also be
turned off. When the prefix area is turned off,
positions 73-79 of the member are displayed.

Each time you press PF2, the prefix area changes from
equal signs, to numbers, and then to data. When you
use the relative-sequence number format, you must
enter commands left-justified, preceded by the repeat
count (if any).

PF3

Exit the editor. If the member has been updated and
not saved, a message warns you that the member has
been changed. To exit anyway, press PF3 again.

PF6

Displays the previous command. The editor stacks the
last six commands entered on the command line. PF6
recalls them one at a time in round-robin fashion. The
recalled command appears on the command line.
Press Enter to execute the command again.

PF7

Scrolls back a page (20 lines through a member on a
Mod 2 terminal). The first two lines on the screen
become the bottom two of the next screen.

PF8

Scrolls forward a page (20 lines through a member on
a Mod 2 terminal). The last two lines on the screen
become the top two of the next screen.

PF9

Repeats the previous command.

Continued

REXX User's Guide 1-25

Using PF Keys While Editing

Continued

PF Key

Function

PF11

Saves the member in the PDS library. If no member
name is entered on the command line, the name of the
member you were editing is assumed. To save the
member under a different name, enter the new
member name in the command line before pressing
PF11. If the new member name already exists, an error
message displays.

You can save a portion of a member by making the
first line you want to save the top line and entering the
filename, followed by the number of lines you want to
save. For example, if you want to save 20 lines of
member TEST beginning with the twentieth line, you
first position the member so that the first line you
want to save is the top line on the screen; then enter
TEST,20 on the command line and press PF11. You
can use the partial save feature to save a portion of one
member and then later use the GET command to copy
it into another member.

PF12

Submits a member to POWER.

CLEAR key

Refreshes the screen and causes the editor to ignore
anything entered on the current screen. Use the
CLEAR key when you enter something you did not
intend.

1-26 GSS

Compiling the REXX IMOD

Compiling the REXX IMOD

Saving an IMOD

Filing an IMOD

When you have added or edited an IMOD and are ready to save it, you can
either save it or file it.

You must file the member to compile it. Filing the member compiles it and saves
the object code as NAME.OAt. The source is saved as NAME.OAL in the
SYS$MON PDS.

Compiling translates REXX into executable code. Saving the member only stores
the member in the SYSSMON PDS.

To save an IMOD, use PF11 or the SAVE command.

If you use the PF11 key and you want to save the member to a name other than
the current one, enter the new member name on the command line before
pressing PF11. Otherwise, the member is saved to its old name.

When you are finished editing the IMOD and you want to save the member,
enter SAVE on the command line and press Enter. The member name of the
member you were editing is saved.

To save the member under a new name, enter the command on the command
line and press Enter. If the member name specified already exists, an error
message appears and you must use a different name.

SAVE new_member_name

Saving an IMOD does not compile the IMOD. Only a FILE command compiles
an IMOD.

To FILE an IMOD, use the FILE command.

When you are finished editing the IMOD and you want to file the member, enter
FILE on the command line and press Enter. The member name of the member
you were editing is saved and compiled.

To file the member under a name other than the current name, enter the
command on the command line and press Enter.

FILE new_member_name

REXX User's Guide 1-27

Compiling the REXX IMOD

If the member name specified already exists, an error message appears and you
must use a different name.

Determining the Member/User Name

The name of the currently selected member is displayed when you enter a
question mark (?) on the command line. The name displayed is the one used if
PF11 is pressed. This name is normally the name of the member entered at the
start of the edit session. Change it by supplying a member name with the PF11
or SAVE command as described previously.

The user ID of the current user is also displayed. This ID is used for security
checking by member name.

Performing Error Processing

Compilation errors are detected at FILE time. All the REXX code is validated for
syntax, and if no errors occur the compiled member is saved. If an error occurs,
the line in question is displayed as the current line and highlighted. An error
message is displayed in the command error describing the error. If time is not
available to correct the error, save the member. If the member was compiled
previously, its object member remains intact.

1. Review the highlighted the line; it is where the error occurred.

2. Review the message describing the error displayed on the command line. If
you need additional help for the message, press PF1.

3. Correct the error.

4. Enter the FILE command again. If there is another error, repeat the process
from Step 1.

The following items describe some specific errors:

» If the error is in the prefix area, all commands entered in the prefix area for
that screen are written back and suffixed with a question mark. No
processing occurs until all commands are correct.

= When a multi-part command is entered and a part of the command is
missing, the partial command is remembered and displayed until the entire
command is entered. No command is processed in the prefix area until the
partial command is completed. At that time, all the commands are
processed.

= If a DELETE, COPY, or MOVE overlaps another command, it is considered
either an error (if a number is was specified with the line command) or an
incomplete command (if a multi-part command was entered).

1-28 GSS

Chapter 2
REXX Language

Overview

REXX Instructions

REXX Functions

This chapter introduces the REXX language. REXX is a general-purpose
structured language that has programming instructions and functions. REXX
IMODs are compiled, translated, and executed.

A REXX program is built from a series of clauses that contain instructions,
functions, and commands. Clauses can include terms such as function calls.
The BIM implementation of REXX includes the following;:

s Instructions

= General REXX function calls

= BIM-FAQS/ ASO-specific function calls

= BIM-FAQS/PCS-specific function calls

s User-written function calls

An instruction in REXX is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Some instructions affect the flow of
control, while others provide services to the programmer. Some instructions,
such as DO, include nested instructions.

General REXX functions are also available. BIM REXX employs both general
REXX functions and product-specific functions. Functions comprise a series of
instructions that can receive data, process that data, and return a value to the
IMOD that issued the function.

Functions differ from instructions because a function performs a process and
returns the result of the process to REXX. An instruction is a single-step process.

REXX User's Guide 2-1

Overview

User Functions

Any IMOD can be called as a function through a call or a function. You can also
write internal functions within an IMOD. It is useful to set up commonly used
routings or functions in their own IMODs, because it reduces complexity and
saves coding time.

For example, the $CYCLE IMOD calls $CICSREP (provided at installation).
$CICSREP issues the reply to CICS even if it is under ICCF. There is I/O
overhead associated with calling another REXX IMOD since the new member
will have to be read from disk. However, this is only noticeable in repetitive
loops when an IMOD is referenced over and over again.

2-2 GSS

Using Online Help

Using Online Help

Direct Help

The BIM editor has an extensive online help facility. You can access help on any
REXX instruction or function directly from the member text. This helps the more
experienced user who knows the command but may be unsure of the actual
parameters. Also provided is a HELP menu panel that lists every REXX
instruction, function, and operator. From this panel you can also obtain editor
help by pressing PF1.

To obtain help on any REXX instruction or function that is coded in the IMOD,
place your cursor on the first letter of the function you want explained and press
PF1. A help panel appears that displays the help text of that function or
instruction. If the BIM help processor cannot determine what function you
desire help for, the Help Menu panel is displayed.

The following screen is an example of a REXX IMOD that contains the
instruction DO.

=> MEM=ADDRESS LINE=0
1...5...10...15...20...25...30...35...40...45_..50...55...60...65...70...75...8
x*BEGIN FILE®=*=* =====

/
/* Sample REXX PROCEDURE: */ =====
/*

/
arg pid cmd =====
"Address Console”
do i =1 to 10 until done
done=replid(pid)—= " *
x=wait("1")
end
if —done then address say "no reply available*®
else pid cmd
exit

Sample REXX IMOD Definition Screen

REXX User's Guide 2-3

Using Online Help

Accessing Online Help from REXX IMOD Editor

To access help for the WAIT(') function, move your cursor to the WAIT function.
Then press PF1 to display the following BIM REXX help screen.

GREXHFNC.HLP WAIT ** REXX HELP ** I1D=DEVVSE .BOBSM2

===>
WAIT(sec)
The WAIT command waits the specified number of seconds.
Operands:
sec Number of seconds to wait.

Default is a 1 second wait.

Return Codes:

0 Function completed normally.
+- SAMPLE PROGRAM: - ————— e +
| DO FOREVER |
| | X=WAIT("43200") /* WAIT 1 DAY */ |
| | D= DATE("B") /* GET BASE DAYS */ |
| D=D-5 /* SUBTRACT 5 DAYS */ |
| D=DATE(U,D, "B") /* GET NEW DATE A |
| Z.=PWRCMD("L LST,CRDATE<="]|D) |
| END |
S +

PF1=Field Level Help PF2=Glossary PF3=Return

Sample REXX Help Screen

2-4 GSS

Using Online Help

Accessing Additional Help from Help Screen

The following screen is an example of the DO help that displays if you place
your cursor on DO in the help example and press PF1. By pressing PF2, you can
move to the glossary of terms and definitions.

In this screen, the words DO and DATE are highlighted or red. You can tab to
these fields and press PF1 for more help. Additionally, you can nest level after
level of help and press PE3 to return through the nest, or press PF12 to return to
the original base help panel.

GREXHFNC.HLP D ** REXX HELP ** ID=TECHVSE.SJA
===>

** BIM-GSS GREXX Do/Drop instruction Help **
DO

The DO instruction defines a block of code to perform as a single
statement, or defines a DO loop block.

FORMAT :

DO <repetiter> <conditional>
<instructions>

END <symbol>

Operands:

repetiter Sets DO block as a repetitive loop. >
symbol=exprl <TO expr2> <BY expr3> <FOR expr4>
expression

FOREVER

PF1=Field Level Help PF2=Glossary PF3=Return PF8=Fwd

Sample DO Help Screen

REXX User's Guide 2-5

Using Online Help

BIM REXX Help Menu

To access the BIM REXX Help Menu while you are editing an IMOD, press PF1
with the cursor on the command line. The following screen shows a sample BIM

REXX Help Menu.

GREXHCON . *
===>

ABBREV(pattern,string, length)
ABS(number)

ADDRESS(Q)

ASOENVQ)

ARG(<n<,option>>)
BITAND(stringl,string2,pad)
BITOR(stringl,string2,pad)
BITXOR(stringl,string2,pad)
B2C(binary-string)
B2X(binary-string)
CENTER(string, length<,pad>)
CENTRE(string, length<,pad>)
COMPARE(stringl,string2<,pad>)
COPIES(string,n)

CP(cmd)

CPUIDQO

C2D(string<,n>)

C2X(string)

*->BIM-FAQS/ASO only
PF1=Edit Help PF3=Return PF8=Fwd PF12=Exit

** BIM-GSS For VSE - GREXX Help **

**->BIM-FAQS/PCS only

ID=TECHVSE.SJA

REXX Keword instructions

CHOW DO UVZZr=MooO>

Address, Arg

Call

Do, Drop

Exit

If, lterate

Leave

Nop, Numeric

Parse

Procedure, Pull, Push
Queue

Return

Say, Select, Signal
Trace

Upper

Sample REXX Help Menu

2-6 GSS

Using Online Help

Function Help

To access information for a particular REXX function or keyword, select that
item and press Enter to display the Help information. The following screen
shows an example of the help information for the ABBREV function.

GREXHFNC.HLP ABBREV ** REXX HELP ** ID=TECHVSE.SJA
===>

ABBREV(pattern,string, length)

The ABBREV function returns 1 if "string" is an abbreviation of "pattern.
Otherwise, it returns O.

Operands:
pattern Full length string. This is the pattern that is checked for an
abbreviation.

string String to check against "pattern”. ABBREV checks to see 1if the
string is an abbreviation of the pattern.

length optional minimal length "string” needed for a match. This is used
if you want a minimum abbreviation.

For example, you may want to check for abbreviations of the
patterns "STARTUP®" and "SHUTDOWN®". Since "S* 1is ambiguous, you
need a minimum abbreviation of 2 ("ST" and "SH").

Examples: >
PF1=Field Level Help PF2=Glossary PF3=Return PF8=Fwd

Sample ABBREV Function Help Menu

REXX User's Guide 2-7

REXX General Usage

REXX General Usage

Comments

Symbols

Strings

A simple yet powerful language, REXX is easy to use and to learn. Most
functions are very natural and similar in syntax. To aid in implementing BIM
REXX, BIM provides many practical examples in the installation and an
extensive online help facility.

REXX allows comments, and all REXX programs must start with a comment. A
comment is delimited by a /* and an */. Since BIM REXX implementation is
compiled, heavy use of comments is encouraged. Comments do not add
overhead in a compiled version of REXX.

Comments are free-form, appearing anywhere and spanning any number of
lines. Comments are useful for documenting IMODs and for commenting out
sections of code.

/* This is a comment required as the first line of an IMOD */

arg data

say data

/*

do i =1 to 10 /* loop for 10 */
z.i=word(data, i) /* set stems for each word*/
if word="" then leave /* if no more word leave */

end

*/

exit |

In the previous example, the DO loop is commented out and is not executed.
Notice how a comment can enclose another comment.

A symbol is a variable, constant, or keyword made up of the following
characters: A-Z, a-z, 0-9, period (.), exclamation mark (!), underscore (_), at sign
(@), pound sign (#), question mark (?), and dollar sign ($). Symbols are
translated to uppercase before use. For example, the symbols BOB, Bob, and bob
are identical.

A string is a group of characters delimited by single quotes (' ') or double quotes
(""). You can delimit the string with double quotes if you include a single quote
in the string, or vice versa. When this is not possible, place two single or two
double quotes together to denote a single character. The null string is used
many times in REXX and is shown as ' .

2-8 GSS

REXX General Usage

Binary Strings

"This is a test”

"Don"t go in the Basement"

“Don""t go in the "Basement""

" /* null string */

A binary string is a string of 0's and 1's, grouped in four characters that can be
delimited by one or more blanks. The first string of characters is assumed to
have a length of 4, and it is right justified with zeros added to align the string to
four characters. The string must be delimited on the left with a single quote (') or
double quote ("), and on the right with a 'B, 'b, "B, or "b.

"001 0000"b ==> "10"x
"0010000"b ==> "10"x
"11110000"b ==> F"FO"x

"11 0000 1111°b ==> "30F"x
"11 00001111°*b ==> *"30F"Xx
"00110001%b ==> "31%x

Hexadecimal Strings

Expressions

Assignments

A hexadecimal string is a string made up of the characters 0-9, A-F, a-f, grouped
in pairs delimited by one or more blanks. The first character does not have to be
paired, and a 0 is added on the left to pair this character. The string must be
delimited on the left with a single quote (') or double quote ("), and on the right
with an 'X, 'x, "X, or "x.

"F c7 F8%x ==>"0FC7F8"x
“C17x —=> A"
"C1lc2C3"x ==> “ABC*
"123 45%x ==> "012345"x

An expression is an instance of one or more strings, symbols, operators, or
functions. Expressions are evaluated left to right with respect to parentheses and
operator precedence.

“"aaa”||"bbb* time()

X *y

word(substr(x),5)

Variables can be assigned data by the use of ARG, PARSE, PULL, and ADDRESS
environments. You can also use an equal sign (=) to assign a symbol to the value
of an expression.

symbol=expression

REXX User's Guide 2-9

REXX Operators

REXX Operators

Prefix Operators

Boolean Operators

Comparators

Positive number
Negative number

And
or
Exclusive Or

Not

Addition

Subtraction
Multiplication
Division

Remainder of division
Integer division
Concatenation

Equal

Identical

Greater than

Greater than or equal
Less than

Less than or equal

Not equal

Not equal

Not equal

Not identical

Not greater than

Not greater than or equal
Not less than

Not less than or equal

2-10 GSS

Variables

Variables

BIM implementation of REXX contains four types of variables:
= Simple variables

= Stem variables

= Global variables

s Global stem variables

Simple Variables

Simple variables are symbols whose values can be changed during the execution
of a REXX IMOD. Simple variables can be up to 50 characters long and can be
assigned values up to 4096 bytes. These variables are local to the currently
executing REXX IMOD; they cannot be referenced by other IMODs or
procedures. However, called procedures can access these simple variables
through the EXPOSE command on the procedure definition.

Stem Variables

Stem variables are composed of a stem symbol and a period (.), denoting a
family of stems that can be cleared, initialized, set, or dropped.

A="" /* set the stem family A. to null */
data.="none* /* set the stem family data. to "none® */
data.=cp("ind") /* set the stem family data. to cp data*/

drop b. /* drop the stem family b. */

You can assign or reference any member of a stem family by appending a
symbol to the family name. This symbol can be a constant or a variable. A
variable is useful for accessing all members of a family when the members are
named by numbers and the 0 member contains the number of members in the
family. Some functions assign stems in this manner.

A.1="test"
test.i="the" i]]|"th member*

family.member="john*

REXX User's Guide 2-11

Variables

Stem Variable Assignments

Global Variables

Some functions return stem variable assignments. Stem variable assignments
indicate that a variable's value changes during the execution of REXX and that a
new value is assigned to it. The functions CP, POWER, PWRCMD, and
MESSAGE return stem variable assignments.

z.=cp("IND™)

doi =1to z.0
say z.1i

end

Global variables are symbols whose values can be changed during the execution
of a REXX IMOD. Global variables can be up to 8 characters long and can be
assigned values up to 105 bytes, including the variable name. Global variables
are prefixed with an ampersand (&). Because of the nature of REXX, global
variables cannot be concatenated through abuttal; they must be concatenated
with a blank or | |.

Global variables can be used only for REXX IMODs executed through the
FAQSAO task. These IMODs include those triggered using SMSGs, console
messages, console commands, online commands, browser requests, BIM-
FAQS/PCS commands, and GEM (Global Event Manager). Global variables are
kept until you assign them to null or drop them. They are kept on disk and in
storage and are unaffected by an IPL.

Because of the nature of the FAQSAO task multi-threading IMODs, you can be
assured of the state of a global variable until you perform a function that has an
implied wait—such as CP(), WAIT(), POWER(), PWRCMD, MESSAGE(), or
MSG(). At these implied waits, other IMODS are run, and the values of your
global variables are subject to change.

&A=""

&node="enabled”

Global Stem Variables

Global stem variables function like normal stem variables but according to the
rules of global variables. The only difference between global variables and
global stem variables is their life expectancy. Since global stem variables are not
written to disk, they do not survive end-of-job.

2-12 GSS

How Arguments Are Passed

How Arguments Are Passed

The method for passing arguments created by commands, messages, or SMSGs
to BIM-FAQS/ ASO REXX IMODs is SAA-compatible. The information created
by the command, message, or SMSG is passed to the IMOD. All related data can
be accessed using the ASOENV function. ASOENYV is designed to return
information that previously passed as part of the argument.

Default Argument Passing Method

The IMODs, commands, and action files shipped with your installation tape use
the new argument settings. Any calls to IMODs prefixed with $ and
downloaded at installation must be modified to use the new argument settings.
Also, the ASO CMS EXEC used to call IMODS through SMSG has changed to
support the new ASO identifier, which denotes the new argument settings.

You still have the option of using the old argument settings. Fields are provided
on the action and command file definition screens that control the argument

setting. By default, these fields are enabled for actions and commands already
defined.

If a Message Triggered an IMOD
Prior to BIM-FAQS/ ASO version 3.x, when a message triggered an IMOD the
following information was passed to the IMOD:
= Action name
= Partition ID
= Jobname
s Phase name
s Time

= Message that triggered the IMOD

Now only the message that triggered the IMOD is passed to the IMOD.

REXX User's Guide 2-13

How Arguments Are Passed

If a Command Triggered an IMOD

Prior to BIM-FAQS/ ASQO version 3.x, when commands triggered an IMOD the
following information was passed to the IMOD:

s Command name

= Related data that triggered the execution of the IMOD

Now only the data that triggered the IMOD is passed.

If an SMSG Triggered an IMOD

Prior to BIM-FAQS/ ASO version 3.x, when an ASO CMS EXEC triggered
IMODs using SMSG, the CMS machine ID and related data were passed to the
IMOD. Now only related data is passed when an SMSG triggers an IMOD.

2-14 GSS

Differences Between BIM REXX and IBM REXX

Differences Between BIM REXX and IBM REXX

INTERPRET

The following section lists all differences between the B I Moyle Associates Inc.
and IBM's implementations of REXX. The REXX used as the basis for
comparison is TSO/E REXX, plus certain clarifications from M. F. Cowlishaw's
The REXX Language: A Practical Approach to Programming. BIM REXX includes a
number of very subtle and minor differences. The only significant lack in BIM
REXX implementation is the lack of the INTERPRET keyword (because BIM uses
a compiled REXX implementation).

INTERPRET is not supported. However, the VALUE function can usually
perform the same function as INTERPRET.

Loop Control Variables

Labels

Loop control variables can be altered in BIM REXX, but the name of the variable
cannot be altered. IBM REXX permits constructions like the following:

DO a.i=1 to 4;i=X;end

a.i is the loop control variable, whose name is altered by changing the variable i
within the loop. IBM REXX supports this by searching the symbol table each
cycle, with very large overhead. BIM REXX saves a pointer to the variable
information at the start of the loop, so it ignores any change of variable name
such as the above. Both IBM REXX and BIM REXX permit the value of the loop
control variable to be altered or referenced within the loop. This practice is
strongly discouraged, but both IBM REXX and BIM REXX allow it.

Labels in BIM REXX cannot be duplicated. IBM REXX permits duplicate labels
and ignores all but the first. BIM REXX signals duplicate labels with a compile
time error message.

Labels in BIM REXX are restricted in length. IBM REXX supports function
names and labels of the same length as symbols, and supports all symbols up to
250 characters in length. BIM REXX restricts the length of a function label or a
called label to 32 unique characters. Additional characters in function labels can
be supplied but are ignored. All other BIM REXX labels can contain 250
characters.

REXX User's Guide 2-15

Differences Between BIM REXX and IBM REXX

Signal

MAX and MIN

Symbols

TRACEs

IBM REXX does not support SIGNAL into a DO block. BIM REXX disallows
SIGNAL into an active DO group, but it does not error flag signals into a simple
DO block. An active DO group is considered to be any active looping DO group
defined by DO UNTIL, WHILE, or TO/BY/FOR. A signal into a simple DO
block with no iteration is not an error.

MAX and MIN support only whole numbers. IBM REXX allows these functions
to operate on decimal numbers.

Symbols can include additional characters. BIM REXX permits symbols to
contain alphanumerics, underscore (_), at sign (@), pound sign (#), question
mark (?), exclamation mark (!), and dollar sign ($). These are the same characters
allowed in symbols by TSO/E REXX. IBM REXX does not allow @, #, and $ to be
used.

TRACES are not implemented in a totally compatible fashion. REXX supports an
extensive TRACE facility. BIM REXX supports a slightly different and extended
TRACE facility.

BIM REXX supports the TRACE All, Commands, Error, Failure, Intermediate,
Labels, Normal, Off, and Results operands of SAA REXX. The trace output from
BIM REXX can differ slightly from REXX trace output.

For example, BIM REXX does not display all continued lines, although it does
display the first line of a group of continued lines. BIM REXX supports the
TRACE VALUE form for the above commands. BIM REXX also supports
TRACE VAR vlist, where "vlist" is a list of names of variables for which
alterations are traced. BIM REXX also supports TRACE VAR (vnhame), where
"vname" is an indirect reference to a list of variables —like the "DROP (vname)"
support. If a stem root is specified as the operand of this form of the trace, then
it and all subsequently created stem items are traced. This variable alteration
trace is not currently supported by IBM REXX, but it has been a SHARE
requirement for SAA REXX. If IBM supports it in the future, BIM REXX will
comply with the IBM implementation. This means that the BIM REXX
implementation is subject to change.

2-16 GSS

Differences Between BIM REXX and IBM REXX

C2D

In BIM REXX, the C2D function is restricted to four input characters. IBM REXX
permits you to pass a string of any length to the C2D function. BIM REXX passes
a string of any length to C2D when the second operand to the function is
omitted, but it limits the string to four characters when the second operand is
specified.

Floating Point Numbers

UPPER

DATE

DUMPSTG

BIM REXX implements most standard REXX floating point arithmetic. BIM does
not implement the fourth and fifth operands of the FORMAT function (expp and
expt). NUMERIC FORM SCIENTIFIC is assumed. No NUMERIC FORM
statement is supported.

UPPER is supported for stem root variables in BIM REXX. In IBM REXX, UPPER
A.is an error. In BIM REXYX, it is supported by converting the value of A. to
uppercase.

You can code DATE(Option,yyyyddd) to convert the specified date to the format
specified by Option. You can code DATE(Option,ddddddd,'B') to convert the
specified base day number to the format specified by Option. You can code
DATE(Option,yyyymmdd,'S') to convert the specified standard date number to
the format specified by Option.

DUMPSTG(address,length) is similar to the storage function except that the
designated data is returned as display hexadecimal. The maximum length
supported is 256 bytes (512 bytes of display hex).

REXX User's Guide 2-17

Performance Hints

Performance Hints

Global Variables

Stem Variables

The following list summarizes performance techniques for BIM REXX and
includes items unique to BIM REXX as well as some items common to BIM and
IBM REXX.

Global variables use more storage and are slightly slower to access and update
than local variables.

Stem variables use more storage and are slower to access and update than non-
stem variables.

Assignments = vs ==

Long Strings

SUBSTR

Numbers

The normal relational equal operator (=) is substantially slower than the
relational identical operator (==); therefore, you should use "==". This is an
extremely important point for both IBM REXX and BIM REXX.

Long strings can be much slower than strings < 500 characters. Concatenation to
build strings longer than the default temporary string size is not optimized and
can be slow.

SUBSTR with explicit numeric 2nd and 3rd operands is optimized at compile
time and is very fast.

Numbers expressed as simple integers instead of as strings (with quotes) are
handled as binary values. They are much faster to use in arithmetic than strings.
This internal use of binary numbers by BIM REXX is transparent to the user and
only affects performance. BIM REXX maintains a value as internal binary once
created until it is concatenated or displayed when the value is converted to
character. This conversion process is relatively slow.

2-18 GSS

Performance Hints

Comments

Statements

Arithmetic Items

Numbers with more than 9 digits or numbers expressed as floating point values
are much slower than integers that fit in a full word. The default NUMERIC
DIGITS value is 9. Any NUMERIC DIGITS value other than 9 seriously impacts
performance.

Comments cost nothing and can be used freely. In IBM REXX, comments can be
expensive.

Statements can occupy the same or separate lines with no cost. In IBM REXX,
statements coded on one line are faster.

Arithmetic items are best limited to integers that can be expressed as a binary
full word. BIM REXX supports floating point numbers up to 250 digits for all
operations. BIM REXX also uses binary arithmetic and carries numeric items in
binary for all operations where this is possible. BIM REXX optimizes all one-
and two-digit numerics, which are extremely quick and require no temporary
storage (other numbers can use temporary storage).

REXX User's Guide 2-19

Performance Hints

2-20 GSS

Chapter 3
REXX Instructions

This chapter lists and explains REXX instructions.

An instruction in REXX is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Some instructions affect the flow of
control, while others provide services to the programmer. Some instructions,
such as DO, include nested instructions. REXX instructions do not return data
and cannot be used in an assignment.

ADDRESS environment <command>

Purpose

The ADDRESS instruction is used to pass a command to a specific processor.
environment must be specified. command is optional and if not specified, the
ADDRESS environment is set. Once an environment is set, any expressions not
understood by REXX are passed to the current environment. If command is
specified, that command is passed to the temporary environment specified.

Example

Required product
ADDRESS AO ASO PCS
ADDRESS CARD
ADDRESS CICS PCS
ADDRESS CONSOLE
ADDRESS DISK

ADDRESS EPIC EPIC
ADDRESS EVENT PCS
ADDRESS EVSE CA-EXPLORE
ADDRESS OUTPUT

ADDRESS PCL PCS
ADDRESS PCS PCS
ADDRESS PDS ASO PCS
ADDRESS PDATE PCS
ADDRESS POWER ASO PCS
ADDRESS PROGRAM ASO PCS
ADDRESS PUNCH

ADDRESS SYS ASO PCS

REXX User's Guide 3-1

ARG template

ARG template

Purpose

The ARG instruction retrieves arguments passed to a function or procedure.
ARG is a shorthand for the PARSE instruction.

Example

ARG argl arg2

RESULT

Purpose

The RESULT variable is set whenever a function is called and returns a value (an
online function call is replaced by the function's result, but a called function
needs a place to put its value). RESULT is also set when ADDRESS returns a
value. The RESULT variable stays set until another function CALL or an
ADDRESS command changes its value. You can refer to RESULT anywhere a
variable can be referenced.

Example

result=""

call set

say "set returned” result
exit result

set:
X = "data“
return result

1...5...10...15...20...25...30...35...40...45...50...55...60..
set returned data

3-2 GSS

CALL function <expression<,expression>...>

CALL function <expression<,expression>...>

Purpose

CALL invokes a function or procedure that exits using a RETURN statement.

Example
CALL fact(4)
FACT: PROCEDURE
PARSE ARG n
if n=1 then return n
RETURN n*(FACT(n-1))
The symbol RESULT is used to store any returned value of a called routine. In

the above example, RESULT would receive the value '24'. The above call could
have been written as the following with equivalent results.

result=fact(4)

FACT: PROCEDURE
PARSE ARG n
if n=1 then return n
RETURN n*(FACT(n-1))

DO

Purpose
The DO instruction defines either of the following:
= A block of code to perform as a single statement
= A DO loop block

Syntax

DO <repetiter> <conditional>
<instructions>

END <symbol>

REXX User's Guide 3-3

DO

Operands

repetiter Sets DO block as a repetitive loop.

symbol=exprl <TO expr2> <BY expr3> <FOR expr4>
expression
FOREVER

conditional Defines exception conditions to break or continue loops. Expression is any
expression that evaluates to 1 or 0. See also sections LEAVE and ITERATE.

WHILE expression
UNTIL expression

instructions Any instructions you want to be executed in the DO group.

Examples: Simple Do Groups

IT "A"="A" then do
say "A=AT
a="A=A"

end

else do

say "A=B~
a=b

end

Examples: Simple Do Loops

Do 5
izi+l
say i
end
doi=1to5
say i
end
do forever
i=i+l
say i
x=wait("60")
end

3-4 GSS

DROP

Examples: Complex Do Loops

DROP

Purpose

Example

do i =i to i+5

say i
end
Do i= 10 to 1 by -1
say 1
end
doi=1to5 until i=4
say i
end
do forever while i1<=1000
i=i+l
say i
x=wait("60")
end
done=0

do forever until done
z=wait("1%)
done=replid(pid)-="
end

The DROP instruction discards a variable or variables when you no longer need
them. When a stem root is dropped, all stem values are discarded. In the
following example, (vname) indirectly references variables to drop. The main use
of DROP is to save storage or destroy a global variable. Setting a variable to null

is not equivalent to dropping the variable.

DROP a. b c (vname) &jobname.bg

REXX User's Guide 3-5

EXIT <expression>

EXIT <expression>

Purpose

Example

IF

Purpose

Example

The EXIT instruction ends execution of a REXX program. The optional operand
can be used to have a result returned. You should use RETURN for end-user
and internal functions. EXIT causes immediate termination of the whole
program. An EXIT is assumed at the end of any IMOD.

1=10

exit "value of i="i

'value of i=10' is returned as the program result.

The IF instruction performs a relational test and conditionally executes REXX
statements based on the result of the test. The statement executed can be a single
instruction or a DO group.

IF i=1 THEN say "i was 1°
ELSE call fact(i)
IF i=1 & i>0 THEN do
say i
i=i+l
end
ELSE do 1 =1 to i+5
say i
end
done=0
if -done then x=wait(4)

3-6 GSS

ITERATE <symbol>

ITERATE <symbol>

Purpose

Examples

THEN

Purpose

Example

The ITERATE instruction continues with a DO loop from within that loop. If no
symbol is specified, the innermost loop is iterated. If a symbol is specified, it
must match the name of the control variable symbol of a currently active DO
loop.

do i=1 to 4
if 1=3 then iterate
say "i="]]i
end

Output is i=1, i=2, and I=4. The i=3 line is not output.

do j=1 to 5
say "J="11]i
doi =1to5
if 1*j=6 then iterate
say "i="||i i*j}
if 1*j=8 then iterate j
end
end

THEN is a normal success path for IF instruction.

If i=1 then say "i was 1°

REXX User's Guide 3-7

ELSE

ELSE

Purpose
ELSE is an alternate path for IF instruction. The ELSE clause is executed if the

condition tested by the IF instruction fails.

Example

i=2
if 1=3 then say "If test succeeded”
else say "i="||1

Output is i=2. The 'If test succeeded' line is not output.

LEAVE <symbol>

Purpose
The LEAVE instruction exits a DO loop or DO block without completing it. If no
symbol is specified, the innermost loop is left. If a symbol is specified, it must
match the name of control variable symbol of a currently active do loop.
Example

do i=1 to 4
if 1=3 then leave
say "i="]]i

end

Output is i=1, i=2. The i=3 and i=4 lines are not output. The LEAVE command
causes an immediate exit from the loop.

do j=1 to 5
say "j="11]i
doi=1tob5
if 1*j=6 then leave
say "i="||1 i*j}
if 1*j=8 then leave j
end
end

3-8 GSS

NOP

NOP

Purpose

Example

NUMERIC

Purpose

Example

OTHERWISE

Purpose

The NOP instruction is a dummy instruction. NOP has no effect. It may make a
listing more readable. It is also necessary for some complex IF-THEN-ELSE
structures.

do i=1 to 4
if 1=3 then nop
else say "i="]]i

end

Output is i=1, i=2, and i=4. The i=3 line is not output.

The NUMERIC instruction allows you to set the floating point precision of
arithmetic operations and comparisons. The current setting can be checked
using the FUZZ function.

NUMERIC FUZZ number

The OTHERWISE clause is an optional clause of the SELECT instruction. If
OTHERWISE is omitted and a WHEN does not succeed, an execution error is
signaled. It is strongly suggested that you always code an OTHERWISE. You
can code NOP as the target of the OTHERWISE.

REXX User's Guide 3-9

PARSE

Example

select
when a=1 then i
when a=2 then i
otherwise say *
end

a is neither 1 nor 2°

PARSE

Purpose

The PARSE instruction scans a string and extracts fields directed by a pattern.

Examples
PARSE <UPPER> ARG <template>
PULL
SOURCE
VALUE expression WITH
VAR name
VERSION
PARSE <UPPER> ARG <template>
Parses the string passed to the IMOD, subroutine, or procedure with the
provided template.
parse arg wl . w3 rest
The 1st argument is scanned and w1 receives the 1st word; word 2 is ignored; w3
receives the 3rd word; and the remainder is placed in rest.

PARSE <UPPER> source template

Not supported.

PARSE <UPPER> PULL template

The top stack item is uppercased and put in value. The stack must not be empty.
Use the QUEUED() function to check that the stack is not empty.

PARSE <UPPER> VAR symbol template
parse var vhame al "." a2

The value of vname is scanned for a period and the data up to the period is
placed in al, the data following in a2. The period is deleted, and it is not placed
in either variable. Blanks and binary zeros are not stripped.

3-10 GSS

PROCEDURE <expose <(> variable list <)> >

PROCEDURE <expose <(> variable list <)> >

Purpose

Examples

PULL

Purpose

The PROCEDURE instruction defines a REXX subroutine with its own set of
variables. PROCEDURE hides all preexisting variables.

You can add an EXPOSE clause to reveal selected variables.

a=1;b=2

call sub a b

/* a still equal 1 */
say result

exit

sub: procedure
arg a b

a= atb

return a

a=1;b=2

call sub /* returns 4 */
say "sub returned® result
exit

sub: procedure expose a,b
if a=1 then return b+2
else return O

The PULL instruction reads and parses the next string from the program stack.
PULL name places the top stack item in name. PULL template is short for PARSE

UPPER PULL template.

REXX User's Guide 3-11

PUSH

PUSH

Purpose

Example

QUEUE

Purpose

Example

RETURN

Purpose

The PUSH instruction places its string operand at the top of the program stack.
PUSH maintains a LIFO (Last In First Out) stack. Any expression can be used as
the operand of PUSH.

do i=1 to 4
push "i="i
end

The QUEUE instruction places a string at the bottom of the program stack.
QUEUE maintains a FIFO (First In First Out) stack. Any expression can be used
as the operand of QUEUE. Use the PULL instruction to retrieve the stack
contents.

do i=1 to 4
queue "i="i
end

The RETURN instruction returns control from a function or called routine. Any
expression can be used as the operand of RETURN. For a function, an
expression is required as the operand, and it is the value of the function. For a
call, an expression is optional as the operand, and it is returned as the value of
the RESULT variable.

3-12 GSS

SAY

SAY

Purpose

Environment
Batch

JCL

CMS

Console CMD

SMSG to VSE

ONLINE

HTTP (Browser)

CICS/BATCH (BUFR)

Example

The SAY instruction displays its operand to the user. The target varies
depending on the environment the IMOD is executed in.

Goes to SYSLOG unless ADDRESS AO SAY redirects it.
Goes to SYSLOG.

Goes to the terminal.

Goes to SYSLOG.

Returns to the VM machine that issued the SMSG, unless address AO SAY is
used to redirect to SYSLOG.

Returns to the online session that triggered the IMOD, unless address AO SAY is
used to redirect to SYSLOG.

Only 80 characters can be displayed with SAY. To display more, use the
SUBSTR function.

Goes to a defined buffer unless ADDRESS AO SAY redirects it. If redirected,
use an ADDRESS AO SAY HTML to continue sending SAY data to the buffer.
By using ADDRESS AO SAY HTML you can generate an HTML document using
SAY commands.

Goes to a defined buffer unless an ADDRESS AO SAY redirects it. If
redirected, use an ADDRESS AO SAY BUER to continue sending SAY data to
the buffer.

Only 80 characters may be displayed with SAY. To display more information,
use the SUBSTR function.

say "y="|ly x*5 "_....... " timeQ
say substr(longvar,1,80)
say substr(longvar,80,80)

REXX User's Guide 3-13

SELECT

SELECT

Purpose
The SELECT instruction defines a SELECT block with one or more WHEN
clauses, and an optional OTHERWISE clause. SELECT blocks are more efficient
than multiple IF THEN clauses or groups.

Example

select
when x=y then ...
when x<y y<z then ...
when x="test" then do

end
otherwise do

end
end

SIGNAL

Purpose
The SIGNAL instruction causes a branch (abnormal change in logic flow). The
required operand must be a label in the current program.
The first SAY instruction is not executed. The only output seen by the user is
'this is only output'.

Example

signal skipit

say "you will never see this”
skipit:

say "this is only output”

3-14 GSS

TRACE

TRACE
All/Commands/Error/Fail/Intermediate/Labels/Normal/Off/
Results

Purpose
The TRACE instruction enables diagnostic displays to help with debugging a
program. All SAA traces are supported plus TRACE VAR vname.
Example
trace var b
do i=1 to 4
b=i*2
end
Output is 3:B=2, 3:B=4, 3:B=6, 3:B=8 (3 indicates the line number).
UPPER
Purpose
The UPPER instruction translates the value of each operand to uppercase. Any
expression can be used as the operand of UPPER.
Example
a="abcd" ;b="UPPER ALREADY*
upper a b
say "a="a",b="b
a=ABCD,b=UPPER ALREADY is the output.
WHEN
Purpose

The WHEN clause is a required clause of SELECT instruction.

REXX User's Guide 3-15

WHEN

Example

select
when a=1 then
when a=2 then
otherwise nop
end

3-16 GSS

Chapter 4
REXX ADDRESS Environments

ADDRESS AO

Syntax

Environment

Operands

LOOP

SAY

This chapter covers REXX ADDRESS environments, the environments in which
REXX commands are processed.

The ADDRESS AO command provides an interface to the FAQSAO IMOD
processor. It allows you to control the way an IMOD functions on your system.

ADDRESS AO LOOP USER Timit
LOOP SYS limit

SAY

SAY CONSOLE
SAY BUFR
SAY BVER
SAY HTML
SAY HVER
MSG

MSGNOH

DUMP

PURGE

This ADDRESS environment is only available for REXX IMODs run through the
FAQSAO task. This includes IMODs triggered through Console commands,
Console messages, Online commands, SMSG, EVENTS, the HTML interface and
started in CICS or a batch partition.

The SYS option sets the default for all IMODs run through FAQSAO. The SYS
option is normally set in the AO initialization panel. The User option is used
when you have a long-running or loop-intensive IMOD. You can specify a limit
of 1-999,999 or of * to run forever.

This option redirects any traces or SAYs to the requested location, which may be
CONSOLE, an HTML document, or a BUFFER . This changes the default, which
is to echo the results of the IMOD to the originator If you do not specify an

REXX User's Guide 4-1

ADDRESS AO

MSG

MSGNOH

DUMP

PURGE

Return Codes
0
4
8

16

Sample Commands

option on the ADDRESS AO SAY request, SAY resumes default operation. The
BVER and HVER are special requests and act as CLOSE routines for the
ADDRESS AO SAY BUFR and ADDRESS AO SAY HTML environments
respectively.

VM only. Set SAY to issue MSG user when triggered through SMSG. MSG is
normally set in the AO initialization panel.

VM only. Set SAY to issue MSGNOH user when triggered through SMSG.
MSGNOH is normally set in the AO initialization panel.

Issuing this command sets the extended dump flag on. DUMP is normally set in
the AO initialization panel.

Purge any IMODs that are waiting to begin execution. PURGE is normally

reserved for the AOINIT IMOD and is controlled from the AO initialization
panel.

Function completed normally.
For HVER/BVER, buffer transfer in progress.
Function not permitted in this environment.

Invalid function.

address "AO SAY CONSOLE*®
address AO LOOP USER *

address "AO SAY CONSOLE*® /* Send to console */

say "Send data to console*

address "AO0 SAY BUFR® /* Resume send to buffer */

cdone=0

do while cdone=0
address "AO SAY HVER" /* Transfer/close HTML */
if rc<>4 then cdone=1 /* HTML request finished */
else x=wait("1%) /* wait 1 and try again */

end

exit

4-2 GSS

ADDRESS CARD

ADDRESS CARD

The ADDRESS CARD command allows you to read data from SYSIPT, and is
only available from the BIM$RXBA utility.

Syntax
ADDRESS CARD

ADDRESS CARD .
ADDRESS CARD anything

Environment

This ADDRESS environment is only available for REXX IMODs run in batch via
the BIM$RXBA program.

Operand

anything Some data is required to actually read the SYSIPT data. If no data is supplied,
the ADDRESS environment is set to CARD. When any unknown REXX
statements are processed, they are passed to the ADDRESS card.

Return Codes
0 Function completed normally.

4 No SYSIPT data left to read.

Sample Commands

address CARD .
address CARD

Sample Program

rc=0;i=1

address card .

do forever until rc—=4
z.i=result;z.0=i
i=i+l
address card .

end

REXX User's Guide 4-3

ADDRESS CICS

ADDRESS CICS

The ADDRESS CICS command allows you to pass valid JCLBCICS commands to
JCLRCICS. The JCLRCICS task must be active in the target CICS partition.

Syntax

ADDRESS CICS id function args

Environment

This ADDRESS environment is only available if the BIM-FAQS/PCS JCLRCICS
task is active in the target partition. Data is returned in the stem variable 'CICS.,
where CICS.0 is the number of stems that are set.

Operands

id Partition ID or DOS jobname.

function CICS function to invoke. Valid functions are CEMT, OPEN, CLOSE, and START.
args Optional args to pass to the CICS function.

Return Code

0 Function completed normally.

Sample Commands

address CICS F2 CEMT INQ
address CICS T1 CLOSE XYz

Sample Program

pid="F2";cmd="CEMT INQ TAS*
address cics pid cmd
if datatype(cics.0)="N" then do
do i =1 to cics.0
say cics.i
end
end

4-4 GSS

ADDRESS CONSOLE

ADDRESS CONSOLE

The ADDRESS CONSOLE command provides an interface to the VSE ASYNOC
routine. Any valid AR or REPLY can be provided. POWER commands can also
be supplied, but either the PWRCMD interface or the ADDRESS POWER
interface is recommended. No information is returned.

Any valid REPLY or AR command up to 80 characters can be provided. PRTY

REPLY will pass only 71 characters. For VSE/ESA 2+ systems the command
length can be up to a maximum of 126 characters.

Return Codes

0 Function completed normally.

2 Function completed, but ASYNOC was busy and multiple attempts had to be
made.

8 Severe error occurred. More information is available on the system console.

Sample Commands

address console
address console "PRTY J"
address console "0 GO*®

Sample Program

reply ="0 delete”

address console reply

if rc>=4 then say "Unable to issue reply® reply
PID="BG"

reply ="delete”

address console

"PRTY REPLY" pid reply

if rc>=4 then say "Unable to issue reply® reply

ADDRESS DISK

The ADDRESS DISK command allows you to read data from DISK, and is
available only from the BIM$RXBA utility.

Syntax

ADDRESS DISK
ADDRESS DISK .

REXX User's Guide 4-5

ADDRESS EPIC

Environment

Operands

anything

Return Codes
0

4

Sample Commands

Sample Program

ADDRESS EPIC

ADDRESS DISK anything

This ADDRESS environment is available only for REXX IMODs run in batch via
the BIM$RXBA program. It reads records from the FILE GSPDSID and returns
the records in the variable RESULT. It uses a DTFSD with fixed-length records
of 121 bytes, and uses standard OPEN, READ, and CLOSE macros to read the
file.

Some data is required to actually read the GSPDSID file. If no data is supplied,
the ADDRESS environment is set to DISK; as a result, when any unknown REXX
statements are processed, they are passed to the address DISK.

Function completed normally.

No records left to read.

address DISK .
address DISK

rc=0;i=1
address DISK
do forever until rc-=0
"READ"
z.0=i
z.i=result
izi+l
end

The ADDRESS EPIC command provides an interface to the EPIC for VSE
product.

4-6 GSS

ADDRESS EPIC

Return Code

0

Sample Commands

Function completed normally.

ADDRESS EPIC EXTRACT RELEASE STEM n.

This form returns the current EPIC release as n.1 in the stem variables n.1
through n.i, where i is the last DSN record number. The variable 7.0 is set to the
maximum record number returned.

ADDRESS EPIC EXTRACT DSN ID ii STEM n. COUNT ¢

This form returns up to the first c dataset master records in the stem variables 7.1
through n.i, where i is the last DSN record number. The variable 7.0 is set to the
maximum record number returned.

ADDRESS EPIC EXTRACT DSN ID ii STEM n. SKIP s COUNT ¢

This form returns up to ¢ dataset master records in the stem variables 7.1
through n.i, where i is the last DSN record number. The first s records are
skipped. The variable 7.0 is set to the maximum record number returned. Either
or both of the SKIP and COUNT operands can be omitted.

REXX User's Guide 4-7

ADDRESS EVENT

ADDRESS EPIC EXTRACT DSN ID ii STEM n.

This form returns up to the first 100 dataset master records in the stem variables
n.1 through n.i, where i is the last DSN record number. The variable 7.0 is set to
the maximum record number returned. This is a special form where both SKIP

and COUNT are omitted.

ADDRESS EPIC EXTRACT VOL vv STEM n. SKIP s COUNT ¢

This form returns up to ¢ volume records in the stem variables n.1 through .1,
where i is the last volume record number. The first s records are skipped. The
variable 7.0 is set to the maximum record number returned. Either or both of
the SKIP and COUNT operands can be omitted.

ADDRESS EPIC EXTRACT DETAIL ID ii STEM n.
This form returns all detail records associated with DSN ii in the stem variables

n.1 through n.i, where i is the last record number. The variable 7.0 is set to the
maximum record number returned.

ADDRESS EVENT

Syntax

Operands

function

eventname

argument

The ADDRESS EVENT command provides an interface to BIM-FAQS/PCS
events.

ADDRESS EVENT function eventname <argument>

Function can be DELETE, HOLD, POST, RESET, SATISFY, UNHOLD, or LIST.
LIST returns the date in the stem variable EVENT., where EVENT.0 is the
number of stems that are set.

Specify the event name to take action on.

Argument is required for the SATISFY function. Argument can be any user-
defined WHEN condition of AUX=, $§JOB=, PROD=, VAR=, or EVENT=.

4-8 GSS

ADDRESS EXPLORE

Return Codes
0

516

520

524

528

532

536

540

Sample Commands

Sample Program

Function completed normally.

Event not found or invalid status.
Unimplemented feature.

No condition found to satisfy.
$FAQSAO not found.

System GETVIS failure.

Invalid command for BIM-FAQS/ ASO.

Security violation.

address EVENT DELETE DAILYJOB
address EVENT SATISFY XYZ "$JOB=ABC*"

parse arg cmd
address EVENT cmd
if rc>=0 then say "ADDRESS EVENT Failed rc=]|]|rc

ADDRESS EXPLORE

Syntax

The ADDRESS EXPLORE command provides an interface to CA-EXPLORE for
VSE and CA-EXPLORE for CICS-VSE.

ADDRESS EXPLORE prodid EXTRACT data qualifiers
CMD command
BUFFSIZE nnnnn

REXX User's Guide 4-9

ADDRESS EXPLORE

Operands

prodid
Prodid is one of the following product IDs: COMMON, CICS, or VSE.
COMMUON EXTRACT data

When prodid is COMMON (that is, CA-EXPLORE is installed but not necessarily
active), data can have one of the following values:

MACHINFO Machine-specific information
LIBRLDIR Library directory data
LIBRLEND Finds a library member
LIBRLGET Gets a library member

CICS EXTRACT data

When prodid is CICS (that is, CA-EXPLORE for CICS-VSE is active), data can be
one of the following;:

= JOBNAME_LIST

= INTERVAL_DATA
= PLOT DATA

= PLOT_VARS

VSE EXTRACT data

When prodid is VSE (that is, EXPLORE for VSE is active), data can have one of
the following values:

SAMPLE Last 60 minutes of system status
SYSSTATE Current system status

CURSYSI Current SYSTIMEI system statistics
CURCHNI Current SYSTIMEI channel statistics
CURDEVI Current SYSTIMEI device statistics
PART Current SYSTIMEI partition statistics
TASK Current SYSTIMEI task statistics

4-10 GSS

ADDRESS EXPLORE

qualifiers

TASKDISK

TASKDDSN

TASKPGML

TASKOIO

DSNNAME

SDSNNAME

Task disk statistics

Task disk dataset statistics
Task phase usage statistics
Task other 1/O statistics
Get dataset name for area

Get dataset names for a disk

Qualifiers is one or more of the following positional keywords, used to further
identify or limit the scope of the data to be extracted.

Important! The PID, TID, CUU, ID, and STEM keywords must appear in the
specified sequence, if more than one is used. Only STEM is required.

PID id

TID tid

CHAN id

DEVTYPE type

CUU ccuu

IDid

STEM stemvar

optional parms

Two-character partition ID, such as AR, F1, C1, or Z1.

Task ID, specified as four hexadecimal digits (for
example, 0021, 0033, 005B).

Channel ID, specified as two hexadecimal digits (for
example, 00, 01, OF).

VSE device type. Can also be DISK, TAPE, OTHER, or a
2-hex-digit specification of a VSE device type. For a list
of valid VSE device types, see the VSE MAPDEVTY
macro.

Device address of up to four hexadecimal digits (for
example, 0080, 0120, 022c).

Eight-character identifier, such as jobname or node ID.

Stem variable into which the results are placed. stemvar
must be 30 characters or less, including the period.
stemvar.0 will contain the count of stemvar.n's which
were created. STEM is required.

Additional parameters that further identify or limit the
scope of the data to be extracted. Any other information
that the particular extract requires, must be placed after
the stemvar name.

REXX User's Guide 4-11

ADDRESS EXPLORE

CMD and BUFFERSIZE

Sample Program

CMD and BUFFSIZE pass the following values:

command A particular CA-EXPLORE/ VSE SBAT operator
command, such as MAPDISK, CLOSE EVSEARC, or
INDICATE SYSTEM.

nnnnn nnnnn must be between 1024 and 32,768. If you receive

a RC=4 (buffer not large enough to contain all data),
increasing the buffer size may solve the problem.

/* Basic GREXX to access EXPLORE/VSE data thru EXPLXDAT */
signal on error
address EXPLORE COMMON EXTRACT RELEASE
say "EXPLORE/COMMON release=" result
address EXPLORE VSE EXTRACT RELEASE
say "EXPLORE/VSE release=" result
address EXPLORE CICS EXTRACT RELEASE
say "EXPLORE/CICS release=" result
address EXPLORE VSE EXTRACT SYSSTATE STEM STUFF.
say '"‘Records returned=" stuff.0
do i = 1 to stuff.0
result = stuff.i

say c2x(result)
end

return

ERROR:

say "‘Unexpected return code'" rc "from command:"

say sourceline(sigl)

say '"at line" sigl

exit

4-12 GSS

ADDRESS OUTPUT

ADDRESS OUTPUT

Syntax

Environment

Operand

printline

Return Code

0

Sample Commands

Sample Program

The ADDRESS OUTPUT command allows you to send data to SYSLST, and is
available only from the BIM$RXBA utility.

ADDRESS OUTPUT printline

This ADDRESS environment is available only for REXX IMODs run in batch via
the BIM$RXBA program. Since a DTFDI is used, records sent have a maximum
length of 120 bytes.

printline is required, and consists of two parts. The first part is the first byte,
which must be an ASA control character, such as the following;:

blank Space 1 line

0 Space 2 lines

- Space 3 lines

+ Suppress space

1 Skip to line 1 on new page

The second part is the remaining 120 bytes, which are for data you wish to print.

Function completed normally.

address OUTPUT "1This is a new page”

cc="1"

do i=1 to 5
address output cc||"This is line";
cc=" "

end

REXX User's Guide 4-13

ADDRESS PDATE

ADDRESS PDATE

Operands

KEYWORD

DATE=

HOL=

CYC=

ACT=

WCT=

Return Codes
0

4

Address PDATE is used to verify a BIM-FAQS/PCS event day KEYWORD
against the supplied or current date.

This is the keyword to verify. The length of the keyword is from 1 to 8
characters. This must be the first parameter supplied and may be the only parm
used.

The date in (YY/MM/DD) format to use for the keyword verification.

Which Holiday Id table to use when doing the comparison. Holiday Id 000 will
be used if none is supplied

Which Cycle Id table to use when doing the comparison. Cycle Id 000 will be
used if none is supplied

Any holiday action to be used with the keyword. Valid values are: SO P W N.
If no value is supplied, the default of 'keyword is not valid on a holiday' is
assumed

Any non-workday action to use with the keyword. Valid values are: SO P W N.

If no value is supplied, the default of 'keyword is valid on a non-workday' is
assumed

Keyword is valid for the date specified.

Keyword is not valid for the date specified.

4-14 GSS

ADDRESS PDS

ADDRESS PDS

Environment

Operands

function

args

Return Code

0

Sample Command

Sample Program

ADDRESS PDS is used to access a PDS member.

This ADDRESS environment is available only if the customer has BIM-
FAQS/PCS or from the BIM$RXBA utility.

Specify either GET or PUT. GET causes the member to return in the PDS.stem
variable. PDS.0 indicates the number of records returned. Five bytes of control
information begin each record. If you modify a record, blank out the control
information before issuing the PUT function. The appropriate control
information is supplied if blanks or binary zeros appear in the first 5 bytes.

Supply the PDS name, member name, and type, using the format
pds:membname.typ.

Function completed normally.

address pds "GET MON:JCLSCHED.CTL*®

/* */
pds.=""
address pds "GET MON:JCLSCHED.CTL*®
if rc=0 then do
do i=1 to pds.O
if substr(pds.i,11,7)=="&FAQSAO" then do

x=" *| Isubstr(pds.i,6,5)
x=x] | "$FAQSXX" | | substr(pds.i,18)
pds. i=x

end

end
address pds “PUT MON:JCLSCHED.CTL*®
say "JCLSCHED.CTL successfully updated”
exit
end
exit rc

REXX User's Guide 4-15

ADDRESS POWER

ADDRESS POWER

The ADDRESS POWER command provides an interface to POWER to issue
POWER commands through the VSE ASYNOC routine. ADDRESS POWER also
checks to see if the POWER command processor is busy before issuing the
command to ASYNOC. Any valid POWER command can be provided. Itis
recommended that POWER commands be issued through the PWRCMD
function if you have either BIM-FAQS/ASO or BIM-FAQS/PCS installed. No
information is returned.

Any valid POWER command up to 80 characters can be provided. For VSE/ESA
2+ systems the command length can be up to a maximum of 126 characters.

Return Codes

0 Function completed normally.

2 Function completed, but ASYNOC or POWER was busy and multiple attempts
had to be made.

8 VSE asynchronous operator task or POWER is busy. Twenty attempts at 2-

second intervals were made to perform the command, but ASYNOC or POWER
was busy each time.

16 Severe error occurred. More information is available on the system console.

Sample Commands

address POWER
address POWER "D Q-
address POWER "L LST,ALL,CRDATE=05/04/92"

Sample Program

cmd =D Q~
address power cmd
if rc>=4 then say "Unable to issue reply® reply

d = date(b)
d = d-5
d = date(U,d,"b")

address power

"L LST,ALL,CRDATE<="]|d

"PRTY REPLY" pid reply

if rc>=4 then say "Unable to issue reply” reply

4-16 GSS

ADDRESS PROGRAM

ADDRESS PROGRAM

Environment

Operands
name

parms

This ADDRESS environment allows you to call programs from REXX IMODs
and return data via the RESULT variable. The LOAD or CALL option causes the
requested program to be loaded if not already available, and then executed. The
FREE option allows you to remove the program from the partition, thereby
releasing the GETVIS associated with it. The called program is provided the
following:

Input Registers

R1 address of the passed parameters (parms).
R13 Address of a standard 78 byte save area.
R14 Return address.

R15 Address of program loaded.

And then is responsible to return the following;:

Output Registers
RO length of results from program, if any.
R1 address of results from program, up to a maximum of 20000 characters.

R15 Return code.

Note that if you return a result, the address containing this result must be in
defined storage (ex. Not Freevised) until the result has been acknowledged by
REXX code (the RESULT REXX variable has been set). Also keep in mind that the
program must be reentrant and will be entered in AMODE=31. If the program
does not meet the above criteria, it is responsible for preventing reentrancy
issues and/ or setting up access in AMODE=24 and then returning with
AMODE=31. You could write a driver program which calls other programs and
then restores the original environment before returning to REXX.

This ADDRESS environment is available for BIM-FAQS/ASO and BIM-
FAQS/PCS users.

Name of the program to be executed.

Parameters to pass to the program up to a maximum of 128 characters in length.

REXX User's Guide 4-17

ADDRESS SCHEDULE

Return Codes
0

32

Sample Commands

Function completed normally.
Load of requested program failed.

Value of register 15 upon return from the program.

parmlst = "This is a parameter list”
address program "CALL TESTPROG® parmlst
address program "FREE TESTPROG"

ADDRESS SCHEDULE

Operand

cmd

Return Codes
0

16

Sample Command

Sample Program

The ADDRESS SCHEDULE command provides an interface to JCLSCHED.

XXX

Function completed normally.

Severe error occurred. More information is available on the system console.

address SCHEDULE “"S$TEST™

cmd ="schedule”
address schedule cmd
if rc>=0 then say "SCHEDULE FAILED rc=]]rc

4-18 GSS

ADDRESS SYS

ADDRESS SYS

Operand

cmd

Return Codes

0

2

16

Sample Commands

Sample Program

The ADDRESS SYS command provides an interface to the VSE AR (ASYNOC
routine). ADDRESS SYS is similar to ADDRESS CONSOLE except that
ADDRESS SYS allows a BIM-FAQS/ ASO-defined command to be issued. This
allows you to start an IMOD from an IMOD, which can cause a recursive loop.
Use this in special cases only, since uncontrolled loops can cause system failure.

Any valid AR, REPLY, or BIM-FAQS/ ASO-defined console command can be
provided. POWER commands can also be supplied, but either the PWRCMD
interface or the ADDRESS POWER interface is recommended.

No data is returned.

Any valid REPLY or AR command up to 80 characters. For VSE/ESA 2+ systems
the command length can be up to a maximum of 126 characters.

Function completed normally.

Function completed, but ASYNOC was busy and multiple attempts had to be
made.

VSE asynchronous operator task busy. Twenty attempts at 2-second intervals
were made to perform the command, but ASYNOC was busy each time.

Severe error occurred. More information is available on the system console.

address sys “cicsrepl csmt...*"
address sys

cmd ="start” /* start defined as console command/imod */
address SYS cmd
if rc>=4 then say "Unable to start the start IMOD*

REXX User's Guide 4-19

ADDRESS SYS

4-20 GSS

Chapter 5
REXX Functions

BIM REXX employs both general REXX functions and product-specific functions.
Functions comprise a series of instructions that can receive and process data,
then return a value to the IMOD that issued the function.

Functions differ from instructions because a function performs a process and
returns the result of the process to REXX. An instruction is a single-step process.

REXX User's Guide 5-1

ABBREV(pattern,string,length)

ABBREV(pattern,string,length)

Purpose

The ABBREYV function returns 1 if string is an abbreviation of pattern. Otherwise,
it returns 0.

Operands
pattern Full-length string. This is the pattern that is checked for an abbreviation.

string String to check against pattern. ABBREV checks to see whether the string is an
abbreviation of the pattern.

length Optional minimal length string needed for a match. This is used if you want a
minimum abbreviation.

For example, you may want to check for abbreviations of the patterns
'STARTUP' and 'SHUTDOWN'. Since 'S' is ambiguous, you need a minimum
abbreviation of 2 ('ST' and 'SH').

Examples

ABBREV("TEST", "TE",1) => 1
ABBREV("TEST", "TE",3) => 0
ABBREV("TEST","TES",3) ==> 1
ABBREV("TEST", "TX") => 0
The ABBREYV function simplifies command checking in the following sample.

Sample Program

parse upper arg cmd data

select
when abbrev("STARTUP*®,cmd,2) then ...
when abbrev("SHUTDOWN®,cmd,2) then ...
otherwise ...

end

5-2 GSS

ABS(number)

ABS(number)

Purpose
ABS returns the absolute value of number and is formatted according to the
NUMERIC settings.
Operands
number Decimal number.
Examples
ABS("-101.1%) ==> 101.1
ABS("101.12345678) ==> 101.123457
ABS("-32%) ==> 32

Sample Program

if —datatype(z,"N") then x=0
else x=ABS(z-4)

Error Conditions
It is possible for runtime errors to occur with this function. The most common
error is trying to execute a ABS() function on a nonnumeric string. The IMOD
terminates and the following message displays:

GRXO00411 Error within nnnnnnnn, line xx Bad arithmetic conversion

To avoid a runtime error, you should use the DATATYPE function to ensure that
the string is a numeric. See the sample above.

REXX User's Guide 5-3

ADDRESS()

ADDRESS()

Purpose
ADDRESS returns the name of the current environment. This value is for
information purposes only, since you cannot specify the operand of the
ADDRESS instruction as a variable.
Operands
() No operands are required.
Examples
Required product
ADDRESS AO ASO PCS
ADDRESS CARD
ADDRESS CICS PCS

ADDRESS CONSOLE
ADDRESS DISK

ADDRESS EPIC EPIC
ADDRESS EVENT PCS
ADDRESS EVSE CA-EXPLORE
ADDRESS OUTPUT

ADDRESS PCL PCS
ADDRESS PCS PCS
ADDRESS PDS PCS
ADDRESS PDATE PCS
ADDRESS POWER ASO PCS
ADDRESS PROGRAM ASO PCS
ADDRESS PUNCH

ADDRESS SYS ASO PCS
ADDRESS VERSION PCS

5-4 GSS

ARG (<n<,option>>)

ARG (<n<,option>>)

Purpose

Operands
n

option

Examples

Sample Program

If no operand is coded, ARG returns the number of arguments. If an operand is
specified, the value of that argument is returned (null if the specified argument
number is not present). REXX IMODs called from commands can have only 1 or
0 arguments. Procedures can have n arguments.

Optional decimal argument number to check.
Option to test for the existence of the nth arg.

E Returns 1 if nth arg exists. Otherwise, it returns 0.

O Returns 1 if nth arg is omitted. Otherwise, it returns 0.

Example called with no args passed

* CURSOR
ARG() => 0
ARG(2) = "
ARG(2,"e") => 0
ARG(1,"0") = 1

Example called via call imod a,,b

* CURSOR

ARG() => 3

ARG(1) ==> “value of a-
ARG(Z) ==> -
ARG(2,"e") => 0
ARG(1,70%) => 0

a="1 2*

call test a,"test”
exit result

/* ________________ */
/* Sample procedure */
/* ________________ */

test: procedure
if arg(2,"e") then return "-1°
parse arg a b
if a < b then return a
else return b

REXX User's Guide 5-5

ASOENV ()

ASOENV ()

Purpose

Environment

Operands

0

Sample Program

The ASOENV command provides an interface to the FAQSAO IMOD processor
to determine in what environment the IMOD was initiated.

This function returns information on the IMOD execution environment (for
example, ASO or PCS) and information on the operating system environment
(for example, VSE/SP or VSE/ESA). It also provides information about whether
the IMOD was called as a result of an SMSG, AR command, message action, or
GEM.

The data passed as a result of a $MSG action is in fixed format and cannot be
parsed with blank-delimited words.

This function is only available for an IMOD running through the FAQSAO
processor.

No operands are required.

The following example shows how data is parsed and returned using an
X=ASOENV() call. For a more complete example, and to test data passed, see
the $ARG IMOD supplied at installation.

x=asoenv() /* get environment */
parse var x env Ivl avl imod pds type data
select

when type="$CMD" then cmd=data

when type="SMSG® then user=data

when type="$MSG" then do
action=substr(data,1,12)
pid=substr(data,13,2)
Jjobname=substr(data,15,8)
phasename=substr(data,23,8)
time=substr(data,31,8)

end

otherwise nop
end
say "ENVIRONMENT® env
say "IMOD ® imod
say "user " user
say "cmd " cmd

5-6 GSS

BITAND(string1,string2,pad)

say "action
say "pid

say "jobname
say "phasename
say "“time

action
pid
jJjobname
phasename
time

1...5...10...15...
ENVIRONMENT ASO

I1MOD ARG
user

cmd

action MSGOP
pid F7
Jobname JCLSCHED
phasename JCLSCHED
time 17:18:04

BITAND(stringl,string2,pad)

Purpose

Operands
stringl
string?

pad

Examples

Sample Program

BITAND returns the result of the Boolean AND of stringl and string2. The
shorter of the two strings is padded with pad. If pad is omitted, the shortest
string determines the number of positions that participate in the AND operation.
If string2 is omitted, pad is ANDed with each string1 position.

First operand to AND.

Optional second operand to AND.

Optional pad character if stringl and string2 are not the same length.

BITANDC*Y*®,"Y") => "y-
BITANDC® *,7Y") ==> "40°x
BITAND("0101"x,"0101"x) ==> "0101"x
BITAND("0101"x, *0101"x) ==> "0101"x
BITAND("0101"x, "0011"x) ==> "0001-"x
BITAND("0101",,"*ff"x) ==> "0101"x

parse arg cmd

if BITAND(cmd, , "bf*x)=cmd
then say cmd “is all lowercase letters”

REXX User's Guide 5-7

BITOR(string1,string2,pad)

else say cmd "is not all lowercase”

BITOR(string1,string2,pad)

Purpose
BITOR returns the result of the Boolean OR of stringl and string2. The shorter of
the two strings is padded with pad. If pad is omitted, the shortest string
determines the number of positions that participate in the OR operation. If
string2 is omitted, pad is ORed with each string1 position.
Operands
string1 First operand to OR.
string? Optional second operand to OR.
pad Optional pad character if stringl and string2 are not the same length.
Examples
BITOR("ab", "4040"x) ==> AB
BITOR("Bob™,," *) -—> BOB
BITOR("01%"x, 40407 x) ==> "4140"x
BITOR("01","FOFO0"x, "FO") ==> 01
BITOR("ab", "FF"x, "40") ==> F"FFC2"x

Sample Program

parse arg cmd

if BITOR(cmd,," ")=cmd
then say cmd "is all UPPERCASE letters”
else say cmd "is not all UPPERCASE®

5-8 GSS

BITXOR(string1,string2,pad)

BITXOR(stringl,string2,pad)

Purpose
BITXOR returns the result of an exclusive OR of stringl and string2. If pad is
omitted, the shortest string determines the number of positions that participate
in the XOR operation. If string? is omitted, pad is XORed with each string1
position.
Operands
stringl First operand to XOR.
string?2 Optional second operand to XOR.
pad Optional pad character if stringl and string2 are not the same length.
Examples
BITXOR(C"Y","Y") ==> "00"
BITXOR(™ *,"Y™) => "y~
BITXOR("0101"x,"0101"x) ==> "00007"x
BITXOR("0101"x,"0011"x) ==> "0110"x
BITXOR("0101"x, , "FF"x) ==> "FEFE"X

Sample Program

toggle: procedure expose X
X=BITXOR(X, , " FF"x)
return

REXX User's Guide 5-9

B2C(binary-string)

B2C(binary-string)

Purpose

Operands

binary-string

Examples

Sample Program

Error Conditions

The B2C function converts a binary string of 0's and 1's to a character string.
Intervening blanks in the binary string are removed.

Can be any-length string of 0's and 1's. If there are not multiples of 4 binary
digits, the 0's are added to the left of the string. Blanks can be imbedded in the
string, but only at 4-digit boundaries.

B2C(*110000001") ==> A
B2C("1111000111110000%) => 10
B2C("1111 0001 1111 0000%) ==> 10

x=b2c("11000001")
y=b2c("1111000111110000%)
say X y b2c("1111 0001 1111 0000*%)

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a B2C() function on a non-binary string. The IMOD
terminates and the following message displays:

GRX00151 Error in nnnnnnnn, line x Invalid Hexadecimal or Binary string

To ensure that the string is a binary string and thereby avoid a runtime error, use
the DATATYPE function.

5-10 GSS

B2X(binary-string)

B2X(binary-string)

Purpose

Operands

binary-string

Examples

Sample Program

Error Conditions

The B2X function converts a binary string of 0's and 1's to a string of hexadecimal
characters. The returned string is in uppercase, consisting of 0-F characters and
no intervening blanks.

Can be any-length string of 0's and 1's. If there are not multiples of 4 binary
digits, the 0's are added to the left of the string. Blanks can be imbedded in the
string, but only at 4-digit boundaries.

B2X("111") => 07
B2X("1110001") => 71
B2X("11100001") ==> E1
B2X("11 0000 1111%) ==> 30F

x=X2D(b2x("111"))
y=X2C(b2x("11100001"))
z=x2b(b2x(*11 0000 1111%))
say Xy z

1...5...10...15...20...25...30...35...40...45...50...55...60..
7 A 001100001111

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a B2X() function on a non-binary string. The IMOD
terminates and the following message displays:

GRXO0015I Error in nnnnnnnn, line x Invalid Hexadecimal or Binary string

To ensure that the string is a binary string and thereby avoid a runtime error, use
the DATATYPE function.

REXX User's Guide 5-11

CENTER(string,length<,pad>)

CENTER(string,length<,pad>)

Purpose

Operands
string
length

pad

Examples

Sample Program

The CENTER function returns string centered within length positions padded on

the left and right with the pad character.

String to be centered.
Length of output to center string within.

Optional pad character if string is smaller than length.

CENTER("header®,10) ==> " header *
CENTER("header®,10,"-%) ==> “"--header---
CENTER("header®,4,"-%) ==> “eade”

say CENTER("Now is®,10)
say CENTER("the time",10)
say CENTER("for*,10)

say Xy z

1...5...10...15...20...25...30...35...40...45...50...55...

Now is
the time
for

5-12 GSS

CENTRE(string,length<,pad>)

CENTRE(string,length<,pad>)

Purpose
The CENTRE function returns string centered within length positions padded on
the left and right with the pad character.

Operands

string String to be centered.

length Length of output to center string within.

pad Optional pad character if string is smaller than length.

Examples
CENTRE("header®,10) ==> " header *
CENTRE("header®,10,"-") ==> “--header---
CENTRE("header®,4,"-%) ==> “eade”

Sample Program

say CENTRE("Now is®,10)
say CENTRE("the time",10)
say CENTRE("for*,10)

say Xy z

1...5...10...15...20...25...30...35...40...45_...50...55...60..
Now is

the time
for

REXX User's Guide 5-13

CLUSTER(parms)

CLUSTER(parms)

Purpose

To list VSAM clusters from an IMOD.

Operands

parms Depends on function selected.

Examples

Contact BIM-FAQS/ ASO technical support if you wish to use this function.

5-14 GSS

COMPARE(stringl,string2,pad)

COMPARE(stringl,string2,pad)

Purpose
The COMPARE function returns 0 if the strings match. Otherwise, it returns the
position of the first character that does not match.
Operands
stringl String to be centered.
string?2 Length of output to center string within.
pad Optional pad character if one string is smaller than the other. The default pad
character is blank.
Examples
COMPARE("xyz", "Xyz™) => 0
COMPARE("xyz.","xyz",".") => 0
COMPARE("xyz", "xYz") => 2
COMPARE("1234",7123") => 4

Sample Program

x=readcons("is this it?")

if compare(x, "This is it") =0
then say "ok”
else say "String® x T"incorrect”

REXX User's Guide 5-15

COPIES(string,n)

COPIES(string,n)

Purpose
The COPIES function returns a string made up of n copies of the input string.
No intervening spaces are added and one copy of the string is placed adjacent to
the next copy.

Operands

string String to be copied.

n Number of copies to make.

Examples
COPIES("+...","3%) S T T
COPIES("xyz","1") ==> Xxyz
COPIES("xyz","0%) => "

CP(cmd,ASIS)

Purpose

The CP command provides an interface to VM. The command is issued using a
VM diagnosis.

Data is returned in a stem variable.

A maximum of 80 data lines can be returned. Stem.0 contains the number of
stem variables returned. If the CP reply buffer is too small to handle all the data
returned, the first stem variable is set to CP REPLY BUFFER EXCEEDED.

Operands

cmd Any valid CP command for which the VSE machine has the proper VM CLASS
authority.

ASIS ASIS can be coded to allow the data to be issued without uppercasing it. This
allows SMSG hex data to be sent to other machines, but you must ensure the
actual commands are passed in the proper case.

5-16 GSS

CP(cmd,ASIS)

Return Codes

Sample Program

Error Conditions

CP command issued. Check the stem variable for results.

No command provided.

No valid BIM-FAQS/ ASO product code.

e
z.=cp("ind")
if rc=0 then do
do i=1 to z.0
say strip(z.i)
end
end
else do
say "CP failed rc="]|rc
end

1...5...10...15...20...25...30...35...40...45...50...55...60. .
AVGPROC-014% 01

STORAGE-031% PAGING-0003/SEC STEAL-000%

Q0-00001(00000) DORMANT-00057
Q1-00001(00000) E1-00000(00000)

Q2-00000(00000) EXPAN-001 E2-00000(00000)

Q3-00002(00000) EXPAN-001 E3-00000(00000)

PROC 0001-014%

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a CP() function and not assigning stem data. The
IMOD terminates and the following message displays:

GRXO0108I Error in nnnnnnnn, line x Function returned unassigned stem data

REXX User's Guide 5-17

CPUID()

CPUID()

Purpose

Operand

0

Sample Program

The CPUID command provides CPUID and VM machine name information. On
non-VM machines, only the CPUID is returned.

No operands are required.

say "The current CPU ID is® word(cpuid(),1)
say "The current MACHINE is" word(cpuid(),2)

1...5...10...15...20...25...30...35...40...45_...50...55...60..
The current CPU ID is FF17301330900000
The current MACHINE is DEVVSE

C2D(string<,n>)

Purpose

Operands
string

n

Examples

C2D returns the decimal value of the characters given as input. The result must
not have a value greater than the current NUMERIC DIGITS.

String to convert to decimal.

If n is not specified, the result is assumed to be an unsigned number.

C2D("OF"x) ==> 15
c2D("3%) ==> 243

C2D("F3"x) ==> 243
C2D("0081°x) ==> 129

C2D("ABC") ==> 12698307
C2D("ABCde®) ==> 8.32196280E+11
C2D("Fffb") ==> 65531
C2D("Fffb",2) ==> -5

5-18 GSS

C2X(string)

C2X(string)

Purpose
C2X returns the hexadecimal value of the characters given as input.
Operand
string String to convert to display hexadecimal.
Examples
C2X("3") ==> F3
C2X("AB™) ==> C1C2

DATATYPE(string<,type>)

Purpose

DATATYPE returns a code for the type of data in string. It returns 'NUM' for

decimal or 'CHAR'. If the second operand is specified, DATATYPE returns 1 if

the desired type was found; otherwise, it returns 0.

Operands
string String to determine datatype of.
type Optional desired type character to check for specified type.

A ‘Alphanumeric' returns 1 if string contains only
characters in the range('a','z'), range('A','Z"), and
range('0','9").

B ‘Binary' returns 1 if string contains only characters '0'
or'l's.

L 'Lowercase' returns 1 if string contains only lowercase
letters.

M 'MixedCase' returns 1 if string contains only lowercase
and uppercase letters.

N 'Numeric' returns 1 if string contains only numbers in
the range(0,9).

REXX User's Guide 5-19

DATATYPE(string<,type>)

S 'Symbol' returns 1 if string contains only characters that
are REXX symbols.
U 'UPPERCASE' returns 1 if string contains only

uppercase letters.

W 'Whole-number' returns 1 if string is a whole number
under the current setting of NUMERIC DIGITS.

X 'heXadecimal' returns 1 if string is a valid hexadecimal
number. Case is ignored. A null string is a valid
hexadecimal number. Blanks are allowed as two-
character pairs.

Examples
DATATYPE(" 17 ==> “NUM"
DATATYPE(" X1 ") ==> "CHAR"
DATATYPE("1A") ==> "CHAR"
DATATYPE("1A","X") => 1
DATATYPE("31F7","X") => 1
DATATYPE("31F7","B") => 0
DATATYPE(*Bob™, *M") => 1
DATATYPE("Bob™,"L") => 0

Sample Program

if —datatype(z,"N") then x=0
else x=ABS(z-4)

5-20 GSS

DATE(<option<,date<,’B’>>>)

DATE(<option<,date<,'B’>>>)

Purpose
If date is omitted, DATE returns the current date. The optional supplied date
must be seven characters in yyyyddd format. If option is not specified, the format
dd Mmm yyyy is used. For example, DATE() returns 20 Jul 1992' for July 20,
1992.
Operands
option Optional format of date to return. Only the first character of 'option' is checked.
This allows you to have a more descriptive option in your program or simply a
letter.
B Number of complete days since January 1, 0001 (Base
days)
C Number of days since January 1 of the start of the
century.
D Number of days so far this year, counting today.
E Date in the format dd/mm/yy (European format).
J Date in the format yyddd (Julian or OS format).
M Name of the current month (examples 'August’,
'October").
@) Date in the format yy/mm/dd (Ordered format).
S Date in the format yyyymmdd (Sorted format).
U Date in the format mm/dd/yy (USA format).
A\ Weekday (e.g., 'Tuesday', 'sunday’).
date Optional date to convert to desired format. Must be in the format yyyyddd
unless B is specified for base days.
‘B’ Date provided is in base days. This option is useful for doing calculations on

dates without having to worry about leap years and crossing boundaries.

REXX User's Guide 5-21

DELSTR(string,n<length>)

Examples
DATEQ ==> 20 Jul 1992*
DATE(B) ==> 727398
DATE(C) ==> 33804
DATE(D) ==> 202
DATE(E) ==> "20/07/92"
DATE(J) ==> 92202
DATE(M) ==> “July"
DATE(O) ==> "92/07/20"
DATE(S) ==> "19920720"
DATE(U) ==> "07/20/92"
DATE(W) ==> “Monday"
DATE(U, "1992001%) ==> "01/01/92"
DATE(U, "727398","b") ==> "07/19/92"
Sample Program
d=date("b") /* get base days */
d=d-5 /* subtract 5 days */
d=date(U,d,"b") /* get new date */

address power "L LST,ALL,CRDATE<="]|d

DELSTR(string,n<length>)

Purpose
The DELSTR function returns the string resulting when the substring starting at
n and of length length is removed from string. DELSTR removes the designated
substring, concatenates the leading and trailing substrings, and returns the
result.

Operands

string String to alter.

n Starting position.

length Number of positions to remove.

Examples
DELSTR("123456" ,3) => -12- <== LEFT("123456",2)
DELSTR("123456",3,2) ==> "1256"
DELSTR("123456",7) ==> "123456"
DELSTR("12345",1,4) ==> *"5* <== RIGHT("12345",1)

5-22 GSS

DELWORD(string,n,length)

DELWORD(string,n,length)

Purpose

Operands
string
n

length

Examples

DIGITS()

Purpose

Operand

()

Example

The DELWORD function returns the string resulting when the word(s) starting
at word n are removed from string (length words are removed). DELWORD
removes the designated words, concatenates the leading and trailing substrings,

and returns the result.

String to alter.
Starting word number.

Optional number of words to remove.

DELWORD("REXX 1is not fun®,3,1) ==>
DELWORD(*REXX is not fun-®,3) ==>
DELWORD("REXX 1is not fun®,1,3) ==>

"REXX is fun®
"REXX is”
“fun*

The DIGITS function returns the value of NUMERIC DIGITS.

No operands are required.

DIGITSQ => 9

REXX User's Guide 5-23

D2C(number<,n>)

Sample Program
say digitsQ)
numeric digits 5
say digitsQ)

D2C(number<,n>)

Purpose
The D2C function returns the character string that is the binary of number.
Operands
number Decimal number to convert to character.
n Length of result. If number is negative, n must be specified and must be large
enough to contain the result.
Examples
D2C(256) ==> "100"x
D2C(255,2) ==> "00FF"x
D2C(4095) ==> "OFFF"x
D2C(4096) ==> "1000"x
D2C(4096,1) ==> *00"x
D2C(-1,2) ==> “fFfFf"x

Error Conditions
It is possible for runtime errors to occur with this function. The most common
error is trying to execute a D2C() function and number is not a decimal whole

number. The IMOD terminates and the following message occurs:

GRX00411 Error within nnnnnnnn, line xx Bad arithmetic conversion

5-24 GSS

D2X(nhumber<,n>)

D2X(number<,n>)

Purpose

Operands

number

Examples

Error Conditions

ERRORTEXT(n)

Purpose

Operand

n

The D2X function returns the hexadecimal string that is the value of number.

Decimal number to convert to hexadecimal.

Optional length.

D2X(256) ==> "100"
D2X(256,2) ==> -00-
D2X(4095) ==> “fff"
D2X(4096) ==> *1000"
D2X (4096, 1) => Q"
D2X(-1,2) => “ff"

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a D2X() function and number is not a decimal whole
number. The IMOD terminates and the following message appears:

GRX00411 Error within nnnnnnnn, line xx Bad arithmetic conversion

The ERRORTEXT function returns the REXX error message associated with the
error number specified. n must be a number in the range of 0-99. If there is no
error message defined for the number, ** undefined' is returned.

Decimal number between 0 and 99.

REXX User's Guide 5-25

FIND(string,tgt)

Example

ERRORTEXT(41) ==> Bad arithmetic conversion

Sample Program

do i=1 to 99
say errortext(i)
end

1...5...10...15...20...25...30...35...40...45_._..50...55...60..
** undefined

** undefined

Program is unreadable

Program interrupted

FIND(string,tgt)

Purpose
The FIND function returns 0 if gt not found in string. Otherwise, FIND matches
blank-delimited words, is insensitive to the number of blanks preceding or
following a word, and returns the word number.

Operands

string String to search for tgt.

tgt Search argument (series of words).

Examples

FINDC* now is the time", "the time") ==> =3°
FIND("How now brown cow®,"now cow") => "0"

5-26 GSS

FORM()

FORM()

Purpose

Operand

()

Example

Sample Program

The FORM instruction returns the value of NUMERIC FORM.

No operands required.

FORMQO ==> “"SCIENTIFIC"

say "The current form is® form(Q)
numeric form engineering
say "The current form is"||formQ

1...5...10...15...20...25...30...35...40...45...50...55...60..
The current form is SCIENTIFIC
The current form is ENGINEERING

FORMAT(number,<integer>,<decimal>)

Purpose

Operands

integer

decimal

The FORMAT function formats and rounds the specified number. If number only
is specified, the operation is equivalent to doing number=number+0.

The number of characters to be used in the integer part of the number. If integer
is too small to contain the number, an error results.

The number of characters to be used in the decimal part of the number.

REXX User's Guide 5-27

FORMAT(number,<integer>,<decimal>)

Examples

Format("10",6) => " 10"
Format(*10.52",4,1) ==> * 10.5°
Format(*10.52%,3,2) ==> *~ 10.52°
Format(®10.52%,2,2) ==> "10.520"

Sample Program

/* BIM$RXBA exec to read product and prices then format */
/* into dollars and cents. */
address card
total=0;rc=0
do i= 1 to 1000 until rc-=0

"READ*

z.i=result; z.0=i; total=total+word(result,?2)
end
address output
cc=" *
call header
do i=1 to z.0

if 1 // 60 = 0 then call header

i

x=Format(word(z.i,2),,2)

x= right(x)

cc| |substr(word(z.i,1),1,10) "$"||Ix
end

cell* -om--—-)

cc|"Total: * right(format(total, ,2),6)
exit

/* HEADER is a PROCEDURE to localize variable cc */
header: procedure

cc="1"

address output cc]] Product: Price:"

return

// EXEC BIM$RXBA,SI1ZE=BIM$RXBA,PARM="FORMAT "

BIKE 79
BAT 15.95
BALL .79
/*

1...5...10...15...20...25...30...35...40...45...50...55...60..
Product: Price:

BIKE 79.00
BAT 15.95
BALL 0.79
BALL 0.79
Total: 96.53

5-28 GSS

FUZZ()

FUZZ()

Purpose

Operand

()

Example

GETVIS(pid)

Purpose

Operand

pid

Return Codes

0
8
16
-3

The FUZZ function returns the value of NUME FUZZ.

No operands required.

FUZZQ => 0

The GETVIS command provides GETVIS information about partitions or the

SVA. GETVIS returns the following information:
= Length of GETVIS control information

= Maximum GETVIS used to this point for the current jobstep

= Free space
= Used space
= Maximum block of contiguous free GETVIS

Any valid partition ID: BG, F1-FB, AR for the SVA, or dynamics.

Function completed normally.
Invalid parameter length. Must be 2-characters long.
Partition ID not found.

No valid BIM-FAQS/ ASO product code

REXX User's Guide 5-29

GETVIS(pid)

Example

Sample Program

GETVIS("BG") ==> "00000016 00001268 00000986 00001030 00000801*"

say " Length Max Free Used Max*®

say " Getvis Used Getvis Getvis Block™

pid= pidlist("B") |]|"AR" /* set possible pids */

Jj= length(pid) % 2 /* calculate # of Pids in string */

doi =0 to j-1 /* loop for number of pids-1 */
y=substr(pid, i*2+1,2) /* calculate index to pid string */
x=getvis(y) /* get getvis for pid y */

if rc=0 then call getdspl x
else say "Getvis failed rc="||rc "pid="]]y

end

exit

/ /
/* getdspl: get dispaly information. */
/ /
getdspl:

parse var x ctllen maxused free used contig
total=free+used
total=substr(strip(total,l,"0")|]"K",1,9)
maxused=substr(strip(maxused,l,"0")]]"K",1,9)
free=substr(strip(free,1,"0")||"K",1,9)
used=substr(strip(used,1,"0")]]"K",1,9)
contig=substr(strip(contig,1,"0")||"K",1,9)

if total="K" then say "Getvis Area for®™ y "Not Initialized”
else say y total maxused free used contig

return

1...5...10...
LENGTH
GETVIS

F1 344K

F3 3100K

F7 2012K

F5 2020K

F4 2048K

F2 1944K

FB 3508K

GETVIS AREA FOR BG NOT
GETVIS AREA FOR FA NOT

F8 912K
F9 1916K

GETVIS AREA FOR F6 NOT

AR 1476K

15...20..

MAX
USED
256K
2740K
728K
1064K
964K
756K
2904K

852K
1816K

800K

.25...30...35...40...
FREE USED
GETVIS GETVIS
171K 173K
413K 2687K
1400K 612K
1186K 834K
1133K 915K
1236K 708K
788K 2720K
INITIALIZED
INITIALIZED
132K 780K
428K 1488K
INITIALIZED
870K 606K

MAX
BLOCK
131K
377K
1296K
1053K
1085K
1201K
788K

61K
154K

722K

5-30 GSS

INDEX(haystack,needle,start)

INDEX(haystack,needle,start)

Purpose

Operands
haystack
needle

start

Examples

Sample Program

INDEX returns 0 if string needle does not occur within string haystack. Otherwise,

it returns the decimal character position.

String to search.
Desired string.

Optional decimal starting position.

INDEX("ABCDEFGH", "A%) => "1-
INDEX("ABCDEFGH" , "a*") => 0"
INDEX("ABCDEFGH", "F*) => 6"
INDEX("ABCDEFGH","1%) ==> 0"
INDEX("ABCDEFGH", "CDE") => *"3*

INDEX("ABCDEFGH","CDE" ,4) ==> *"0°

string="Now is the time"
data="not"

say result

exit

test: procedure string data
n=index(string," *)
n=index(string," ",n)
string=insert(data||" ",string,n)
return string

* CURSOR

1...5...10...15...20...25...30...35...40...45..

Now is not the time

.50...55...60..

REXX User's Guide 5-31

INSERT(new,target,<n><length>,<pad>)

INSERT(new,target,<n> <length>,<pad>)

Purpose
Insert a new string into a target string at the specified position. If a length is
specified, the new string is truncated or padded on the right with the pad
character.

Operands

new New string to insert.

target Target string.

n Insert new beginning after the nth character (default is 0).

length Length of new string to insert (default is length of new).

pad Pad character (default is blank).

Examples
INSERT("Now is the","time",,11," *) ==> “Now is the time~
INSERT("is","Now the time",4) ==> “Now is the time-

Sample Program

string="Now is the time*
data="not"

say result

exit

test: procedure string data

n=index(string,")

n=index(string,” ",n)
string=insert(data,string,n, length(data)+1," *)
return string

1...5...10...15...20...25...30...35...40...45...50...55...60..
Now is not the time

5-32 GSS

JOBACCT(pid)

JOBACCT(pid)

Purpose

Operand

pid

Return Codes
0

8

16

-3

Sample Program

The JOBACCT command provides job accounting information about jobs
running in the system. JOBACCT works like ASO] / PRTY J. The following
accounting information is returned:

= Jobname

s Phase name

» Job duration
= Step duration
s CPU seconds
s SIO count

Any valid partition ID: BG, F1-FB, or dynamics.

Function completed normally.
Invalid parameter length. Must be two characters long.
Partition ID not found.

No valid BIM-FAQS/ ASO product code.

x="Job Phase Job Step Cpu SI10*
say © "]Ix

x="Name Name Duration Duration Seconds cnt*
say * "]Ix

pid="F2*

Xx=jobacct(pid) /* get getvis for specified pid */

if rc=0 then say pid x
else say “Jobname failed rc="||rc "pid="]|pid

1...5...10...15...20...25...30...35...40...45...50...55...60..

Job Phase Job Step Cpu SI0
Name Name Duration Duration Seconds Cnt
F2 CICSMROA DFHSIP 08.45.35 08.41.46 021.93 10177

REXX User's Guide

5-33

JOBACCT('CPU") / JOBACCT(PAG')

JOBACCT('CPU") / JOBACCT('PAG")

Purpose

Return Codes
0
8
-3

Sample Program

This command provides either the CPU or PAGing statistics for the past ten
minutes, in one minute intervals.

Function completed normally.
Invalid parameter length. Must be three characters.

No valid BIM-FAQS/ ASO product code.

See the sample IMOD $GETCPU for more information.

5-34 GSS

JOBNAME(pid)

JOBNAME(pid)

Purpose

Operand

pid

Return Codes
0
8

16

Example

Sample Program

The JOBNAME command retrieves the jobname from the COMREG for the

specified partition ID. If a partition ID is not entered, the jobname is the message

that triggered the IMOD or the jobname where FAQSAO resides.

Any valid partition ID: BG, F1-FB, or dynamics.

Function completed normally.
Invalid parameter length. Must be two characters long.
Partition ID not found.

No valid BIM-FAQS/ ASO product code.

JOBNAME("BG*™) ==> “NONAME *
JOBNAME("F27) ==> F"CICSA *

X=jobname("BG")
if rc=0 then say strip(x) "is in BG"
else say "Jobname failed rc="||rc
x=jobname("1%)
if rc=0 then say X
else say "Jobname failed rc="||rc

1...5...10...15...20...25...30...35...40...45...50...55...60..
LIBR is in BG
Jobname failed rc=8

REXX User's Guide

5-35

JUSTIFY (string,length,pad)

JUSTIFY (string,length,pad)

Purpose

Operand
string
length

pad

Examples

Sample Program

The JUSTIFY function returns the string resulting when the individual word of
string is justified with character pad to a width of length positions. Justification
proceeds left to right. To perform justification right to left as in most SCRIPT
processors, use the REVERSE function. The online help panels use this

extensively.

String to be justified.
Width to justify within.

Optional pad character (default is blank).

JUSTIFY("Now it the time-",3) ==> “"Now"

JUSTIFY("Now it the time~*,16) ==> “Now is the time-
JUSTIFY("Now it the time~*,17) ==> "Now is the time~
JUSTIFY("Now it the time~*,18) ==> “Now is the time~
work="Now is the time for all”

say justify(work,24)

work=reverse(Justify(reverse(work),24))

say work
1...5...10...15...20...25...30...35...40...45...50...55...60

Now is the time for all
Now is the time Tfor all

5-36 GSS

LASTPOS(needle,haystack,start)

LASTPOS(needle,haystack,start)

Purpose
The LASTPOS function returns the decimal value of the last occurrence of needle
within the string haystack. Returns 0 if not found.

Operands

needle Search argument

haystack String to search

start Optional starting position for backward search.

Examples
LASTPOS(" *,"123 xyz abc*®) ==> 8
LASTPOS(" *, 123 xyz abc",8) ==> 8
LASTPOS(® *,"123 xyz abc®,7) => 4
LASTPOS("qgrs*,"123 xyz abc") => 0

Sample Program

parm="e d c b a*
index = length(parm)
do i = 1 to words(parm)
index=lastpos(® *",parm,index-1)
say subsr(parm,index+1,1)
index=index-1
end

REXX User's Guide 5-37

LEFT(string,length,pad)

LEFT(string,length,pad)

Purpose
The LEFT function returns string left justified to a width of length.
Operands
string String to left justify.
length Width of resulting string.
pad Optional pad value (default is blank).
Examples
LEFT("abcd",6) ==> “"abcd "
LEFT("1234",8,".") ==> "1234_..."
LEFT("12347,2,7.7) => "]12F

Sample Program

linelen=25

call Iformat "Widget","78"

call Iformat "Steal Bar-®,"100"
call Iformat "Program Errors®,"7"
exit

Iformat: procedure expose linelen

say left(arg(l),linelen,".") right(arg(2),4)
return

Widget. 78
Steal Bar................ 100
Program Errors........... 7

5-38 GSS

LENGTH(string)

LENGTH(string)

Purpose

Operand

string

Examples

Sample Program

The LENGTH function returns the length of string, and returns 0 for a null string.

String to check length

LENGTH(000012) returns 2.
LENGTH("abcd®) returns 4.
LENGTH(" ") returns O.

a="54a92"

n=0

c=0

do 1 to length(a)

1 =
if datatype(substr(a,1,i),"N") then n=n+1
else c=c+1
end
say "There are™ n "numeric digits in the string”
say "There are" c¢ "non-numeric digits in the string”

1...5...10...15...20...25...30...35...40...45...50...55...

There are 4 numeric digits in the string
There are 1 non-numeric digits in the string

REXX User's Guide 5-39

LIBR(function,parms)

LIBR(function,parms)

Purpose

Operand

function

parms

Examples

LINESIZE()

Purpose

Operand

0

Example

Sample Program

To access VSE library members from an IMOD.

LIBLIST, LIBINFO, SUBLIST, MEMLIST, or MEMBER

Depends on function selected

Contact BIM-FAQS/ASO technical support if you wish to use this function.

The LINESIZE function returns the decimal value of the line size to be used for
the SAY instruction.

No operands required.

LINESIZEQ) ==> 80

parm="This is a test of the linesize() function”
if length(parm) <= linesize()
then say parm
else do
substr(parm,1,linesize())
substr(parm, linesize(),80)
end

5-40

GSS

LISTCAT(parms)

LISTCAT(parms)

Purpose
To list VSAM clusters and get information about total space free, used, etc. from
an IMOD.

Operand

parms Depends on function selected

Examples

Contact BIM-FAQS/ ASO technical support if you wish to use this function.

MAX(number,number,...)

Purpose
The MAX function returns the maximum of the whole number operands. Up to
ten decimal operands can be passed.
Operand
number Whole number
Examples
MAX(1,2,20,30,4,5,6,7,8) ==> 30
MAX(1,2,3,4,5,6,7,8,9,10) ==> 10
MAX(-2,-33,-14) => -2

Error Conditions
It is possible for runtime errors to occur with this function. The most common
error is trying to execute a MAX() function and number is not a decimal. The

IMOD terminates and the following message occurs:

GRX00411 Error within nnnnnnnn, line xx Bad arithmetic conversion

REXX User's Guide 5-41

MESSAGE(<pid>,<count>,<scan>,<start>)

MESSAGE(<pid>,<count>,<scan>,<start>)

Purpose

Operand

pid

count

scan

start

Return Codes

0

The MESSAGE command retrieves messages from the hardcopy file. A
maximum of 200 messages can be returned. Messages are returned in LIFO
format. The most recent messages are first. A maximum of 2000 messages can
be read (VSE/ESA releases prior to 2), or, for VSE/ESA release 2 and above, to
either the previous IPL or the start of the hardcopy file, whichever is reached
first.

Any valid partition ID: BG, F1-FB, AR, or dynamics. If a partition ID is not
specified, all messages are returned.

The number of messages to return.

Optional scan information. If scan data is specified, the requested messages
must contain the scan data.

Optional number of messages to skip before data is returned.

Function completed normally.
Function completed normally.

No valid BIM-FAQS/ ASO product code.

5-42 GSS

MIN(number,number,...)

Sample Program

Error Conditions

/* take a terminal out of service and get the node
/* Note: a real example is provided in $CYCLE
arg pid term
call $cicsrep pid "CEMT S TER("||term]]") OUT"
cics. = message(pid,"8%)
do i=1 to cics.0
if word(cics.i,3)="Ter("||term]|")" then do
j=i-1
parse var cics.j . "Net(" node *)*
if node="" then do

j =i-2

parse var cics.j - “Net(" node ")*
end
leave

end
end
node= strip(node)
say "NODE="||node "is available*

1...5...10...15...20...25...30...35...40...45...50...

Node=D72L304 is available

*/

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a MESSAGE() function and not assigning stem data.
The IMOD terminates and the following message appears:

GRXO0108I Error in nnnnnnnn, line x Function returned unassigned stem data

MIN(number,number,...)

Purpose

Operand

number

Examples

The MIN function returns the minimum of the whole number operands. Up to

ten whole number operands can be passed.

Whole number

MIN(1,2,20,30,4,5,6,7,8) ==> 1
MIN(55,97,33,1111,10,99) ==> 10
MIN(1,2,3,4,5,6,7,8,9,10) ==> 1

MIN(-2,-33,-14) ==> -33

REXX User's Guide 5-43

MSG(mid<,start>)

MSG(mid<,start>)

Purpose

Operands

mid

start

Return Codes
0

8

16

-3

Sample Program

The MSG command looks up BIM-FAQS/ ASO, BIM-FAQS-PCS, GSS, IBM, or
user-defined message explanations. A maximum of 200 lines of message
description can be returned. If more than 200 lines are needed, you can use the
start parameter to read more data. There is an IMOD ($MSG) provided on
installation to display message descriptions on the system console. This allows
operators to display message descriptions and actions on the system console
without referring to a manual. Specific messages can also trigger full
explanations automatically.

Data is returned in a stem variable. Stem.0 contains the number of stem
variables returned.

Any message or help ID defined in the IBM IESMSGS VSAM file or in the
FAQSMSG VSAM file (VSE/ESA prior to release 2), or the IBM online messages
file (VSE/ESA release 2 and above).

Optional start line to read large messages such as VSAMOPEN.

Function completed normally.
Invalid parameter length. Must be 1-9 characters long.
Message not found.

No valid BIM-FAQS/ ASO product code.

z.=""
z.=msg("4444D")
if rc=0 then do
do i=1 to z.0
say strip(z.i,t)

end
end
else do

say "MSG failed rc="||rc
end

5-44 GSS

OVERLAY (new,tgt,<n><len>,<pad>)

Error Conditions

* CURSOR
1...5...10...15...20...25...30...35...40...45...50...55...60..
4n44T OVERLAP ON UNEXPRD FILE (Ffilename)(SYSxxx = cuu)

Explanation: Refer to Figure 8 in IBM VSE/SP Messages and
Codes. It gives additional explanations regarding the message
identifier and system action.
An extent specified in an EXTENT statement would overlap
one extent of an unexpired non-VSAM-managed file on the volume
named in the message.

System Action:

For type code 1 - The system cancels the job.

For type code D - The system waits for an operator response.

Programmer Response: Compare the high and low extent limits
specified in the EXTENT statement (or your latest LSERV output,

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a MSG() function and not assigning stem data. The
IMOD terminates and the following message appears:

GRX0108I Error in nnnnnnnn, line x Function returned unassigned stem data

OVERLAY (new,tgt,<n><len>,<pad>)

Purpose

Operands
new

tgt

n

len

pad

The OVERLAY function returns the result of overlaying tgt starting at position n
for length len with the string new.

String to overlay tgt with.

String to be altered.

Starting position of tgt to overlay.
Number of positions of tgt to overlay.

Optional pad character (default is space).

REXX User's Guide 5-45

PHASE(pid)

Examples
OVERLAY("X","ABCD",2,1) ==> "AXCD"
OVERLAY("X",*ABCD",2,2," *) ==> *"AX D"
OVERLAY("APPLE","ABCD",1,6,".") ==> “"APPLE."
OVERLAY("APPLE®,"ABCD",1,1,") ==> *“ABCD"

PHASE(pid)

Purpose
The PHASE command retrieves the phase name from the COMREG for the
specified partition ID. This is an 8-character name returned, padded on the right
with blanks.

Operand

pid Any valid partition ID: BG, F1-FB, or dynamic partition.

Return Codes

0 Function completed normally.

8 Invalid parameter length. Must be two characters long.

16 Partition ID not found.

-3 No valid BIM-FAQS/ ASO product code.

Sample Program

x=phase("BG")
if rc=0 then say x

else say "Phase failed rc="]]|rc
x=phase("1%)
if rc=0 then say X

else say "Phase failed rc="]]|rc
if phase("F2") ="DTSINIT * then saTC*

else say "MSG F2*

1...5...10...15...20...25...30...35...40...45...50...55...60..
LIBR
Phase failed rc=8TC

5-46 GSS

PIDLIST(<type>)

PIDLIST(<type>)

Purpose

Operand

type

Return Codes

0

Examples

Sample Program

The PIDLIST command retrieves a list of static partitions and any active dynamic

partitions.

Defaults to S for a list of static partitions. B can be specified for a list of static and

currently active dynamic partitions. D can be specified for a list of dynamic

partitions only. If * is used, the current partition is returned.

Function completed normally.
Invalid parameter.

No valid BIM-FAQS/ ASO product code.

PIDLIST("B*) ==> "F1F3F2FAFOY3F8F7F6F5F4BGT2T1"
PIDLIST("D") ==> "Y3T2T1"

PIDLIST("B*) ==> "F1F3F2FAFOFSF7F6F5F4BG*
PIDLISTQ) ==> "F1F3F2FAFOF8F7F6F5F4BG"

=pidlist("B")
length(pid) % 2
=0 to j-1
y=substr(pid, i*2+1,2)
Xx= jobname(y)
if rc=0 then do
if x="NO NAME" then nop
else jobname=jobname||strip()]|-,"
end

pid
j:
d

[0]

end
say strip(jobname,"b",",")
exit

1...5...10...15...20...25...30...35...40...45...50...

IPWPOWER,DTSINIT,JCLSCHED, BATCH44

REXX User's Guide

5-47

POS(needle,haystack,start)

POS(needle,haystack,start)

Purpose
The POS function returns position where needle is first found within haystack.
Returns 0 if needle does not occur at all within haystack.
Operands
needle String to search haystack for.
haystack String to search
start First position within haystack to check (scan start).
Examples
POS("F2","BG,F1,F2") ==> 7
POS("FA","BG,F1,F2") ==> 0
POS("abc*®, "abcde™) => 1

Sample Program
/*$bump bump a partitions priority */
arg pid
address console "PRTY*
p-=message("AR",8)
doi =1 to p.0
if word(p-i,3)="PRTY" then leave

end
prty=word(p-i,4)
say prty

curloc=pos(pid,prty)
if curloc=0 then return
if curloc>= length(prty)-2 then do

say pid "is already the highest priority”

return
end
if curloc>=length(prty)-5 then do

say pid "is already the second highest priority*

return

end
newprty= substr(prty,1,curloc-2)
newprty=newprty| |substr(prty,curloc+1, length(prty)-1-curloc)
newloc=index(newprty, ", ",curloc)
prty=substr(newprty,1,newloc)||pid]]~,"
prty=prty]| |substr(newprty,newloc+1, length(newprty)-newloc)
address console "PRTY" prty
say prty
return

1...5...10...15...20...25...30...35...40...45...50...55_..60. .
FO=F6=BG=F5,F7,FA,FB,F4,F8,F3,F2,F1
F9=F6=F5,BG,F7,FA,FB,F4,F8,F3,F2,F1

5-48 GSS

POST(event)

POST(event)

Purpose
The POST command posts an BIM-FAQS/PCS event. The event must be in the
current schedule.

Operand

event Any current event from 1-8 characters.

Return Codes

0 Function completed normally.
2 Event already complete or not found.
8 Invalid parameter length. Must be 1-8 characters.

Sample Program
x=post("FAQSAO0™)

if rc=0 then say "Event" event "posted”
else say "POST failed rc="||rc

1...5...10...15...20...25...30...35...40...45...50...55...60..
Event FAQSAO posted

POWER(<queue>,<jobname>,<class>)

Purpose
The POWER command retrieves POWER queue information. XPCC
communicates to POWER to retrieve the requested data.
Data is returned in a stem variable. Stem.0 contains the number of stem
variables returned.

Operand

queue Any valid POWER queue (RDR, LST, PUN, or XMT). The default is RDR.

REXX User's Guide 5-49

POWER(<queue>,<jobname>,<class>)

jobname

class

Return Codes

0

Sample Program

Error Conditions

Eight-character jobname, or eight characters with a preceding * to denote
generic. The default is all jobs.

Class that is displayed. The default is all classes.

Function completed normally.
Invalid jobname parameter. Must be 8 characters or less.

No valid BIM-FAQS/ ASO product code.

z.=power ("LST,,"A")
if rc=0 then do
do i=1 to z.0
say z.1i
end
end
else do
say "POWER failed rc="]|rc
end

1...5...10...15...20...25...30...35...40...45...50...55...60..

1-8 Jobname 3) 39-42 FNO (C))
9 43

10-14 Jobnumber (5) 44-51 Date (8)
15 52

16-18 Job suffix (3) 53-60 User (to) (3)
19 61
20 Priority @ 62-69 Node (to) (8)
21 70
22 Disposition (1) 71-78 Node (from) (8)
23 79
24 Class (¢H) 80-87 User (from) (8)
25 88
26 SYSID (€D) 89-104 Userinfo (16)
27

28-33 pages (6)
34

35-37 copies (©))
38

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a POWER() function and not assigning stem data. The
IMOD terminates and the following message appears:

GRXO0108I Error in nnnnnnnn, line x Function returned unassigned stem data

5-50 GSS

PWRCMD(cmd)

PWRCMD(cmd)

Purpose

Operand

cmd

Return Codes
0
8

-3

Sample Program

The PWRCMD command issues the POWER command through XPCC and
returns messages. XPCC tells POWER to retrieve the requested data.

Data is returned in a stem variable. Stem.0 contains the number of stem
variables returned.

Any PDISPLAY, PALTER, PHOLD, PDELETE, PRELEASE, or PINQUIRE.

Other commands are valid (if authorized), such as PBROADCAST, PGO, PSTOP,

and PSTART.

Function completed normally.
No command provided.

No valid BIM-FAQS/ ASO product code.

z.=pwrcmd("D LST") /* issue PWRCMD and return data in stem */
if rc=0 then do /* check for non-zero return code */
do i=1 to z.0
say strip(z.i)

end /* end do loop */
end /* end if */
pcmd="L LST,XXXX" /* set a variable */
say "AO "]|]pcmd
z.=pwrcmd(pcmd) /* issue pwrcmd and return results */

say strip(z.1)

* cursor
1...5...10...15...20...25...30...35...40...45...50...55...60..
1R461 LIST QUEUE P DCS PAGES CC FORM

1R461 FAOXPCC 27343 4 H A 3 1

1R461 COMPLK 27359 3 D A 7 1 TO=(CAM2)

1R461 GSJOBCTL 27360 3 D A 3 1 TO=(KJIM)

1R461 FAQSVMCF 27361 3 D A 3 1 TO=(KJIM)

1R461 FAQSINIT 27362 3 D A 3 1 TO=(KJIM)

1R461 AUDPRTV2 27314 4 L B 3 1 FROM=(JCLXPCC)
1R461 CATALR 27325 4 H B 1 1 TO=(BCP2)

AO L LST,XXXX
1R881 NOTHING TO DELETE

REXX User's Guide

5-51

QUEUED()

Error Conditions
It is possible for runtime errors to occur with this function. The most common
error is trying to execute a PWRCMD() function and not assigning stem data.

The IMOD terminates and the following message appears:

GRX0108I Error in nnnnnnnn, line x Function returned unassigned stem data

QUEUED()

Purpose

The QUEUED function returns number of items on the program stack (0 if none).
PUSH adds entries to the stack.

RANDOM(min,max,seed)

Purpose
The RANDOM function returns a random number between min and max. If min
and max are both omitted, a random integer is returned.

Operand

min Optional minimum value to return.

max Optional maximum value to return.

seed Optional random number generator seed value.

If only one value is specified, it is assumed to be the max value, and zero is used
for the min value.

A seed can optionally be used to start the random number generator off at a fixed
point, with a reproducible sequence of values. This allows you to generate a
pseudo-random set of numbers for testing purposes. By providing the seed, you
always produce the same sequence of numbers.

All values must be non-negative.

5-52 GSS

RANDOM(min,max,seed)

Examples

Sample Program

RANDOM(1,10,5555) ==> 5
RANDOM(10,20) => 17
RANDOM(5555) ==> 378
RANDOM(5555) ==> 4001

call pseudo_random 99
call pseudo_random 10
exit

/* produce 10 pseudo random numbers always the same */

pseudo_random: procedure
arg x

y=random(1,10,x) /* set pre-determined seed

list=""
do i =0 to 10
list=list random(1,10)
end
say list
return

/* produce list

*/

*/

REXX User's Guide 5-53

READCONS(<data>)

READCONS(<data>)

Purpose

Operand

data

Return Codes
0

-3

Sample Program

The READCONS command issues a read to the system console. The reply ID is
associated with the FAQSAOQ task that issues the read. A maximum of 100
characters can be read. The IMOD waits until the read is satisfied. If data is not
specified, a default message is issued.

Option data to output.

Function completed normally.

No valid BIM-FAQS/ ASO product code.

/* called via console command PRTY intercept */
arg cmd
if words(cmd)=1 then address sys
user= strip(userid(Q))
select
when user="DEVVSE®" then do
/* message masking must be active to hide */
/* on system console when user enters PW= */
pw=readcons("enter password PW=XXXXXX")
parse upper var pw “PW=" pw
iT pw="OPERATIONS" then address sys cmd
else say "SORRY Charlie*
end
when user="BOBSM* then address sys cmd
when user="MERROW®" then address sys cmd
otherwise say "Sorry® user "not allow to alter prty”
end

1...5...10...15...20...25...30...35...40...45_...50...55...60..
SORRY Charlie

5-54 GSS

REPLID(pid)

REPLID(pid)

Purpose
The REPLID command retrieves outstanding replies for the system or specified
partition ID. If a partition ID is not entered, all outstanding replies are returned.
Operand
pid Any valid partition ID: BG, F1-FB, AR or dynamics. If a partition ID is not

specified, all replies are returned.

Return Codes

0 Function completed normally.
8 Invalid parameter length. Must be two characters long.
16 Partition ID not found.
-3 No valid BIM-FAQS/ ASO product code.
Examples
For VSE/ESA prior to release 2:
REPLIDQ) ==> "BG-000 F2-002 F2-037*
REPLID("F2%) ==> "F2-002 F2-037"

For VSE/ESA release 2 and above:
REPLIDQ) ==> "BG-0000 F2-0002 F2-0037"

Sample Program

x=replid("F7")
if rc=0 then do
if x=" " then say "There are no replies outstanding for F7*
else say x

end
else do
say "Replid failed rc="||rc
end
end
x=replid()
if rc=0 then do
if x=" " then say "There are no replies outstanding”
else say x
end
else do
say "Replid failed rc="]|rc
end
end

REXX User's Guide 5-55

REVERSE(string)

1...5...10...15...20...25...30...35...40...45._.

There are no replies outstanding for F7
BG-000 F3-003

.50...55...60..

For more examples, see the IMODs $CICSREP, $REPLY, and $REPLID, supplied

at installation time.

REVERSE(string)

Purpose

Examples

Sample Program

The REVERSE function returns string reversed. The string is swapped end for
end. For example, REVERSE('ABCD') returns 'DCBA'. To perform justification
right to left as in most SCRIPT processors, the online help panels for REXX use
the REVERSE function twice as demonstrated below.

REVERSE("ABCD*") ==> “"DCBA*"
REVERSE("123456789") ==> "989654321"

work="Now is the time for all*
work=reverse(Justify(reverse(work),24))
say work

1...5...10...15...20...25...30...35...40...45__.

Now is the time for all

RIGHT(string,len,pad)

Purpose

The RIGHT function returns string right justified to len positions.

5-56 GSS

SESSION(args)

Operand
string
len

pad

Examples

Sample Program

SESSION(args)

Purpose

Examples

String to right-justify.

Width to right-justify string within.

Optional pad character (default is blank).

RIGHT("abcd”,6) ==> " abcd”
RIGHT("1234",8,".%) ==> "1234"
RIGHT("1234",2) ==> "34"

linelen=25
call rformat
call rformat
call rformat
exit

“"Widget*®,"78"
"Steal Bar®,"100"
"Program Errors-®,"7"

rformat: procedure expose linelen

say left(arg(l),linelen,".") right(arg(2),4)

return

1...5...10...15...20...25...30.
Widget. 78
Steal Bar................ 100
Program Errors........... 7

To establish and utilize a BIM-FAQS/ ASO session from within a REXX IMOD. It
is strongly recommended that you use the provided $SESSION IMOD if you
want to exercise this function. See the comments at the start of the $SESSION
IMOD for further details. You can also look at the $SESTEST, $SESTST1, and
BIMTCPFQ IMOD:s to see the $SESSION IMOD in use.

SESSION(userid,cmd,"1")
SESSI0N(token,cmd)
SESSION(token,cmd, "E®)

REXX User's Guide 5-57

SIGN(number)

SIGN(number)

Purpose
The SIGN function returns -1 if number<0, 0 if number=0, 1 if number>0.
Operand
number Decimal value
Examples
SIGN("1.1%) => 1
SIGN("0") => 0
SIGN("0.0%) => 0
SIGN("-0") => 0
SIGN(™- 17) => -1
SIGN(-2.1) => -1

Error Conditions
It is possible for runtime errors to occur with this function. The most common
error is trying to execute a SIGN() function and the number is not decimal. The

IMOD terminates and the following message displays:

GRX0041I Error within nnnnnnnn, line xx Bad arithmetic conversion

SOURCELINE(<n>)

Purpose
The SOURCELINE function returns the number of lines in the current IMOD, or
returns the nth line.

Operand

n Option line number of IMOD to return. If n is not specified, the number of lines
in the IMOD is returned.

Examples

5-58 GSS

SPACE(string,n,pad)

Sample Program

Error Conditions

SOURCELINEQ) => 76
SOURCEL INE(5) ==> * doi=1"ton"

/* sourceline example */
say "There are" sourceline() "lines in this imod*
do i = 1 to sourceline()
say sourceline(i)
end

1...5...10...15...20...25...30...35...40...45...50...55...60..
There are 5 lines in this imod
/* sourceline example */
say "There are" sourceline() "lines in this imod*
do i = 1 to sourceline()
say sourceline(i)
end

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a SIGN() function and number is not a decimal. The
IMOD terminates and the following message appears:

GRX0041I Error within nnnnnnnn, line xx Bad arithmetic conversion

SPACE(string,n,pad)

Purpose

Operands
string
n

pad

The SPACE function returns the string resulting when each of the words of string
is appended to the next word with n pad characters between words. Any leading
or trailing blanks are first removed from string.

String to format.
Optional number of pad characters between words of string. The default is 1.

Optional pad character (default is blank).

REXX User's Guide 5-59

STATUS(pid)

Examples

Sample Program

STATUS(pid)

Purpose

Operands

pid

Return Codes
0
8

16

SPACE(" one two three four *,1) ==> “one two three four”
SPACE("1 2 3 47,4,".7) => "1....2....3....4"
SPACE("1 2 3 47,0) ==> "1234"

x="1 2 3 4~

X=SPACE(X,4,".")

say X

x=translate(x," *,".%)

say X

X=SPACE(x,0)

say X

The STATUS command retrieves the runcode or TSS byte for each task in a
specified partition. The TSS is explained in the online message facility. Type
MSG TSS from a FAQS console for an explanation of the TSS.

Any valid partition ID: BG, F1-FB, or AR. Any active dynamic partition.

Function completed normally.
Invalid parameter length. Must be two characters long.

Partition ID not found.

5-60 GSS

STRIP(string,option,char)

Examples

Sample Program

status("BG") ==> 21-82
status("F1") ==> 22-83 35-82

pid=pidlist("B")|| "AR" /* set possible pids */

J=length(pid)%2 /* calculate # of Pids in string */

do i =0 to j-1 /* loop for number of pids-1 */
say substr(pid,i*2+1,2) status(substr(pid,i*2+1,2))

end

1...5...10...15...20...25...30...35...40...45...50...55...60..
F1 22=82 33=82 35=82 34=82 36=82

F6 27=82 4A=82

BG 21=82

F3 24=82 3B=82 3D=82 3E=82 48=82

F5 26=82 32=82 30=82 31=82

F7 28=82 37=83 38=82 39=82 3A=82 3C=82

F4 25=82

F2 23=82 40=82 41=82 42=82 44=82 45=82 46=82 43=82

F8 29=82

FA 2B=82

FB 2C=82

F9 2A=82 3F=82 47=82

AR 01=80 02=80 03=80 06=80 08=80 07=80 09=80 0A=80 0C=80 OF=80

STRIP(string,option,char)

Purpose

Operands
string
option

char

The STRIP function returns string resulting when leading/ trailing or both
leading and trailing char characters are removed from string.

String to be stripped.
Optional specifier (L or T or B, default is B).

Optional character to strip (default is blank).

REXX User's Guide 5-61

SUBSTR(string,start<,end><pad>)

Examples

STRIP(® ABC *) ==> "ABC"
STRIP(" ABC ","B") ==> “ABC-
STRIP(® ABC *,°T") ==> " ABC"
STRIP(® ABC *","L") ==> “ABC -
STRIP("0785","L","0") ==> "785"

SUBSTR(string,start<,end><pad>)

Purpose

Operands
string

start

end

pad

Examples

SUBSTR returns the defined substring. If the defined substring is partially
outside of the specified string, the result is padded on the right with the pad
character (or spaces if pad is omitted). You may also want to look at the LEFT
and RIGHT functions, or use the PARSE VAR with template.

String to work on.
Decimal starting position.
Decimal length. If not specified, the rest of the string is assumed.

Pad character if we exceed string boundary. The default for pad is a blank.

SUBSTR(,1,8,"_") ==> - .
SUBSTR("12345678" ,4,2) ==> "45-
SUBSTR("12345678" ,8,2) ==> -8 -
SUBSTR("12345678",8,2,"-") ==> "8-"
SUBSTR("12345678" ,20,2) => = -
SUBSTR("12345678",5) ==> "5678"
SUBSTR("12345678 *,5) ==> *5678 -

5-62 GSS

SUBWORD(string,n<,length>)

SUBWORD(string,n<,length>)

Purpose

Operands
string
n

length

Examples

The SUBWORD function returns substring of string from word n of length words.
The string does not have any leading or trailing blanks.

String to operate upon.
Starting word number.

Number of words. Defaults the rest of the words in the string.

SUBWORD("one two three®,2,1) ==> "two"
SUBWORD("one two three*®,2,2) ==> "two three*
SUBWORD("one two three®,2) ==> “"two three~

SYMBOL(symbol)

Purpose

Operand

symbol

Examples

The SYMBOL command returns the state of the named symbol. If the specified
symbol in not valid, BAD is returned. If symbol is a name of a variable that has a
value, VAR is returned. Otherwise, LIT is returned.

Any valid REXX symbol
x="1"

symbol (x) ==> "VAR"
symbol ("x*) ==> F"LIT"
symbol("+") ==> "BAD"

REXX User's Guide 5-63

TIME(option)

TIME(option)

Purpose

Operand

option

Examples

TIME returns the current time. If option is not specified, the format hh:mm:ss is
used. For example, TIME() returns '14:30:00' at 2:30 in the afternoon. Only the
first capitalized character of the option is checked.

Optional format of time (default is hh:mm:ss).

C Civilian format h:minutes<am | pm>

E Elapsed time as ssssssss.uuuuuu (seconds.microseconds).

H Number of hours since midnight.

L Time in format hh:mm:ss.uuuuuu (uuuuuu=microseconds).
M Number of minutes since midnight.

R Elapsed time as ssssssss.uuuuuu. Resets elapsed time
S Number of seconds since midnight.

The elapsed time clock is started (at zero) for the first call. It accumulates time
thereafter until a TIME('R') call is made.

TIMEQ ==> "21:33:16"
TIMEC'R®) ==> O

TIMEC"C®) ==> "9:33pm"
TIMEC*H") ==> 21

TIME("L®) ==> <21:33:16.722401"
TIMEC*M®) ==> 1203

TIME(C"N®) ==> "21:33:16"
TINE("S®™) ==> 77596

TIMEC'E") ==> 0.000904

5-64 GSS

TRANSLATE(string,tblo,tbli,pad)

TRANSLATE(string,tblo,tbli,pad)

Purpose
The TRANSLATE function returns string after translation is performed. If both
tblo and tbli are omitted, TRANSLATE converts string to all uppercase. When
tblo and tbli are specified, each occurrence of the first character in #bli in string is
replaced by the first tblo character.
Operand
string String to translate.
tblo Optional output character table.
tbli Optional input character table.
pad Optional pad character (default is blank). Is added to the tblo table.
Examples
TRANSLATE("abc*®) ==> "ABC*
TRANSLATE("abc®," *,"b") ==> "a c”
TRANSLATE("abc*®, "123456789", "abc™) ==> "123"
TRANSLATE("abcd *,"123456789","abc") ==> "123d-"
TRANSLATE("abcd *,"123","abcd") ==> "123 *
TRANSLATE("abcd *,"123","abcd",".") ==> "123."
TRUNC(number<,n>)
Purpose
The number is truncated to the specified decimal places, or trailing zeros are
added.
Operand
number Number to truncate..
n Number of decimal places. The default is 0.

REXX User's Guide 5-65

USERID()

Examples

USERID()

Purpose

Operand

0

TRUNC(122.7)
TRUNC(3.14578,2)
TRUNC(2.6,2)
TRUNC(10,2)

==> 122
=> 3.14
==> 2.60
=> 10.00

The USERID function returns the user identifier. This allows you to implement
security on any IMOD based upon the user who is performing a command. The
user identifier is set depending on how the IMOD is run.

Environment
Batch

JCL

CMS

Console CMD
SMSG to VSE

ONLINE

User ID Setting

PCSBAT or BIM$RXBA

JOBCNTRL

PCSBAT

VM MACHINE name or CPUID

VM MACHINE name that did SMSG

BIM-FAQS/ ASO USERID

No operands are required.

5-66 GSS

VALUE(hame<,newvalue>)

VALUE(hame<,newvalue>)

Purpose

Operands
name

value

Sample Program

The VALUE function returns the value of the symbol name, and optionally
allows you to set a new value at the same time. The VALUE() function allows
you to dynamically build variables and assign and retrieve their values. This
allows you to replace some of the functionality of the INTERPRET instruction.
INTERPRET is not implemented due to BIM's implementation of compiled

REXX.

Symbol name to return value of.

New value to assign to the VALUE of name.

/* sample value */
bob="9";test="bob";i=3;bob3="test"
say value(bob)

say value(test)

say value("test")

say value(i)

say value(test]]i)

say value(test]]|"3")

say value(test,newvalue)
say value(test)

say value("test")

say value("bob™)

test
test

9
newvalue
bob
newvalue

REXX User's Guide 5-67

VERIFY (string,ref<,MatchNomatch>,<start>)

VERIFY (string,ref<,MatchNomatch>,<start>)

Purpose
The VERIFY function returns 0 if string only contains characters in list ref.
Otherwise, it returns first position that is not in ref.
Operands
string String to scan for only ref characters.
ref List of characters to check string against.
match Optional match flag, Match or Nomatch. Nomatch is the default. If Match is
specified, VERIFY returns 0 or the first character position in string that is found
in ref.
start Optional position in string to start at (default is 1).
Examples
VERIFY("123" ,xrange(0,9)) ==> 0
VERIFY("1239",xrange(0,8)) => 4
VERIFY("abc*®,"ABC") ==> 1
VERIFY("abc™, "abC®, *M*) == 1
VERIFY("abc*®,"abC","N") ==> 3
VERIFY("abc®,"123","M") ==> 0
VERIFY("abc*,"123","n") ==> 1

5-68 GSS

VSAM(function, parms)

VSAM(function, parms)

Purpose
To read or write to VSAM clusters from an IMOD.
Operand
function READ or WRITE
parms Depends on function selected
Examples

Contact BIM-FAQS/ ASO technical support if you wish to use this function.

VSSPACE(parms)

Purpose
To display space information about a VSAM catalog from an IMOD.
Operand
parms Depends on function selected
Examples

Contact BIM-FAQS/ ASO technical support if you wish to use this function.

REXX User's Guide 5-69

VTAM(‘cmd’,<time>)

VIAM(‘cmd’,<time>)

Purpose

Operands

cmd

time

Return Codes
0

8

32

-3

Sample Program

The VTAM command allows you to issue and receive VTAM commands and
messages through a secondary programmable operator interface. The
FAQSVSPO interface needs to run as a subtask in the FAQSAOQO partition. This
command is only available for IMODs processed by the FAQSAO task.

Data is returned in a stem variable. Stem.0 contains the number of stem
variables returned.

VTAM command to issue. However, VTAM cannot be terminated from this
interface.

Time interval in which VTAM messages are received. Default is two seconds.

VTAM command issued. Check the stem variable for results.
No c¢md provided.
The FAQSVSPO task not active in same partition as FAQSAO.

No valid BIM-FAQS/ ASO product code.

/* Note: a real example is provided in $CYCLE */
z.=vtam(d net,act, id="BIM$TIDR")
do i=1 to z.0
say z.1i
end

1...5...10...15...20...25...30...35...40...45...50...55...60..
D NET,ACT, ID=BIM$TIDR

ISTO971 DISPLAY ACCEPTED

ISTO751 NAME = BIM$TIDR , TYPE = APPL

I1ST4861 STATUS= CONCT , DESIRED STATE= CONCT

IST8611 MODETAB=***NA*** USSTAB=***NA*** |LOGTAB=***NA***
1ST9341 DLOGMOD=***NA***

I1ST5971 CAPABILITY-PLU INHIBITED,SLU INHIBITED,SESSION LIMIT
1ST2131 ACBNAME FOR ID = BIMS$TIDR

1ST6541 1/0 TRACE = OFF, BUFFER TRACE = OFF

IST1711 ACTIVE SESSIONS = 0000000000, SESSION REQUESTS = 000

5-70 GSS

WAIT(sec)

Error Conditions

WAIT(sec)

Purpose

Operand

sec

Return Code

0

Sample Program

IST1721 NO SESSIONS ACTIVE
1ST3141 END

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a VTAM() function and not assigning stem data. The
IMOD terminates and the following message appears:

GRX0108I Error in nnnnnnnn, line x Function returned unassigned stem data

Another possible error is that the FAQSVSPO task is not in the same partition as
FAQSAO.

The WAIT command waits the specified number of seconds.

Number of seconds to wait. For example, X=WAIT(3) specifies a wait of three
seconds.

Function completed normally.

do forever

x=wait("43200%) /* wait 1 day */
d= date("b") /* get base days */
d=d-5 /* subtract 5 days */
d=date(U,d,"b") /* get new date */

z_.=pwrcmd("1 Ist,crdate<="]|d)
end

REXX User's Guide 5-71

WORD(string,n)

WORD(string,n)

Purpose

Operands
string

n

Examples

Sample Program

The WORD function returns word number 7 from string. Returns null if no

word 7 in string.

String to scan for word n

Word number

WORD(" one two three four *,1) ==>
WORD(" one two three four *,2) ==>
WORD(" one two three four *,3) ==>
WORD(" one two three four~,4) ==>
WORD(" one two three four *,5) ==>

“one*
“two*
"three”
“four*

test="BIM-FAQS/ASO BIM-FAQS/PCS BIM-GSS*

do i = 1 to words(test)
say word(test,i)
end

1...5...10...15...20...25...30...35...

BIM—-FAQS/ASO
BIN-FAQS/PCS
BIN-GSS

5-72 GSS

WORDINDEX(string,n)

WORDINDEX(string,n)

Purpose

Operands
string

n

Examples

Sample Program

The WORDINDEX function returns starting position of word number 7 in string.

String to operate on

Word number

WORDINDEX(" one two three four *,2) ==> 7
WORDINDEX(" one two three four *,4) ==> 17
WORDINDEX("one two three four *,1) => 1
WORDINDEX("one two three four *,5) => 0

test="BIM-FAQS/ASO BIM-FAQS/PCS BIM-GSS*

say substr(test,wordindex(test,?2),wordlength(test,?2))
say word(test,2)

end

1...5...10...15...20...25...30...35...40...45_..50...55_..60..
BIM-FAQS/PC
BIM-FAQS/PCS

WORDLENGTH(string,n)

Purpose

Operands
string

n

The WORDLENGTH function returns the length of word number # in string.

String to operate on

Word number

REXX User's Guide 5-73

WORD POS(string,target<,start)

Examples

WORDLENGTH(" one two three four *,2) ==> 3
WORDLENGTH(® one two three four *,4) ==> 5
WORDLENGTH("one two three four *,1) => 3
WORDLENGTH("one two three four *,5) => 0

Sample Program

test="BIM-FAQS/ASO BIM-FAQS/PCS BIM-GSS*

say substr(test,wordindex(test,?2),wordlength(test,?2))
say word(test,?2)

end

1 5...10...15...20...25...30...35...40...45...50...55...60..

BIM—-FAQS/PCS
BIN-FAQS/PCS

WORD POS(string,target<,start)

Purpose
The WORDPOS function returns 0 if target not found in string. Otherwise,
WORDPOS returns word number.

Operands

string String to search for target.

target Search argument (series of words).

start Word to begin search with (default=0).

Examples
WORDPOS(" one two three four *,2) ==> 3
WORDPOS(*" one two three four *,4) ==> 5
WORDPOS("one two three four *,1) => 3
WORDPOS("one two three four *°,5) => 0

Sample Program

test="BIM-FAQS/ASO BIM-FAQS/PCS BIM-GSS*

say substr(test,wordindex(test,?2),wordlength(test,?2))
say word(test,?2)

end

5-74 GSS

WORDS(string)

1...5...10...15...20...25...30...35...40...45._.

BIM-FAQS/PC
BIM-FAQS/PCS

WORDS(string)

Purpose

Operand

string

Examples

Sample Program

.50...55...60..

The WORDS function returns the number of words in string. For example,

WORDS('one two three four ') returns 4.

String to operate on

WORDS(" one two three four®) ==> 4
WORDS("ABC,def 9107) => 2
WORDS (" ™) => 0

test="FAQS/ASO FAQS/PCS FLEE"
do i = 1 to words(test)

say word(test,i)
end

1...5...10...15...20...25...30...35...40...45__.

FAQS/ASO
FAQS/PCS
FLEE

XRANGE(start,end)

Purpose

The XRANGE function returns a string containing all codes from start through
end. If both start and end are omitted, 256 bytes from X'00' through X'FF' are
returned. If start is higher than end, the table is wrapped.

REXX User's Guide 5-75

X2B(hstring)

Operands
start

end

Examples

X2B(hstring)

Purpose

Operand

hstring

Examples

X2C(hstring)

Purpose

Optional starting character (default is '00'x).

Optional ending character (default is 'FF'x).

XRANGE("A","F") ==> “ABCDEF*
XRANGE("10"x, "15"x) ==> 7101112131415"x
XRANGE (" Ff"x, "02"x) ==> "FF000102"x

'ABCDEFGHIJKLMNOPWRSTUVWXYZ' is not equivalent to XRANGE('A','Z").

The X2B function returns the binary string of the hexadecimal string hstring. For
example, X2B('f1'x) returns '11110001'.

String of valid hexadecimal characters.

X2B("C3"x) ==> *11000011"
X2B("F1"x) ==> *11110001"
X2B("1%) ==> *11110001"
X2B("8") ==> *11111000"

Note: This implementation was done prior to Cowlishaw's The REXX Language,
2nd edition, and varies from its description.

The X2C function returns the character value of the hexadecimal string hstring.
For example, X2C('F1F9F8F9') returns '1989".

5-76 GSS

X2D(hstring,n)

Operand
hstring String of valid hexadecimal characters.
Examples
X2C("F1f1 c17) ==> "11A"
X2C("F*) ==> "OF"x
X2C (" FLFOF9F2") ==> "1992"

Error Conditions
It is possible for runtime errors to occur with this function. The most common
error is trying to execute a X2C() function on a non-hexadecimal string. The
IMOD terminates and the following message appears:

GRXO0015I Error in nnnnnnnn, line x Invalid Hexadecimal or Binary string

To ensure that the string is a binary string and thereby avoid a runtime error, use
the DATATYPE function.

X2D(hstring,n)

Purpose
The X2D function returns the decimal value of the hexadecimal string hstring.
For example, X2D('81') returns '129'".
Operands
hstring String of valid hexadecimal characters.
n Length of hstring. n is optional and hstring is unsigned if n is omitted. If n is
specified, hstring is signed.
Examples
X2D("81%) ==> 129"
X2D("81",2) ==> "_127"
X2D("81",4) ==> 129"
X2D("F*) ==> 15"

REXX User's Guide 5-77

X2D(hstring,n)

Error Conditions

It is possible for runtime errors to occur with this function. The most common
error is trying to execute a X2D() function on a non-hexadecimal string. The
IMOD terminates and the following message appears:

GRXO0015I Error in nnnnnnnn, line x Invalid Hexadecimal or Binary string

To ensure that the string is a binary string and thereby avoid a runtime error, use
the DATATYPE function.

5-78 GSS

Appendix A
Sample REXX IMODs

This appendix presents some examples of REXX IMODs.

Sample IMODs

$ADDRESS

$ARG

$BEEPASO

$CICSREP

$CMSREP

$ADDRESS is a sample of the ADDRESS CONSOLE function, which allows an
IMOD to issue a reply or AR command. BIM-FAQS/ASO is shipped with the
AR command "ADDRESS" as a sample in the FAQSASO command file. To use
$ADDRESS, type "ADDRESS command" on the system console or in OP mode
from a BIM-FAQS/ ASO Online interface.

$ARG demonstrates how args are passed to IMODs.

$BEEPASO is a sample of the IMOD used to set BIM-FAQS/CALL conditions.

$CICSREP replies to a CICS partition and is called as an external procedure.

$CMSREP is a working IMOD that performs a reply or command through an
SMSG from another machine. $CMSREP echoes the reply back to the user that
invoked $CMSREDP, or reports on any errors.

REXX User's Guide A-1

Sample IMODs

$CONSOLE

$CP

$CPUUSE

$CYCLE

$DC

$EOJ

$GETVIS

$CONSOLE provides a sample of the ADDRESS CONSOLE function, which
allows an IMOD to issue a reply or AR command. BIM-FAQS/ASO is shipped
with the AR command "CONSOLE" as a sample in the FAQSASO command file.
To use $CONSOLE, type "CONSOLE command" on the system console or in OP
mode from a BIM-FAQS/ ASO Online interface.

$CP issues VM/CP commands and displays information returned on the VSE
console. BIM-FAQS/ ASQO is shipped with the AR command "CP" in the
FAQSASO command file. To use $CP, type "CP cpcmd" on the system or in OP
mode from a BIM-FAQS/ ASO Online interface.

$CPUUSE provides information about a partition(s) use of CPU and SIOS over a
given interval. This is useful for finding over utilization that may need to be
tuned.

$CYCLE cycles a CICS terminal controlled by VTAM.

$DC retrieves specified messages from the VSE hardcopy file and routes them
back to a VM/CMS user. This IMOD is invoked through an SMSG to the VSE
machine to obtain console displays.

$EOJ echoes the time at end-of-job and sets the global variable &job.pid=".

$GETVIS displays GETVIS information by specified partition, or all partitions if
no partition ID is provided. BIM-FAQS/ASO is shipped with an AR command
"$GETVIS" in the FAQSASO command file. To use $GETVIS, type "$GETVIS" on

A-2 GSS

Sample IMODs

$JOB

$JOBACCT

$JOBNAME

$JOBNREP

$JOBTIME

the system or in OP mode from a BIM-FAQS/ASO Online interface, or issue an
SMSG from CMS to display the GETVIS information from the target VSE.

$JOB sets the global variable &job.pid=jobname and calls the IMOD $jobtime.

$JOBACCT issues and displays job accounting info. BIM-FAQS/ASO is shipped
with an AR command "$JOBACCT" in the FAQSASO command file. To use this
IMOD, type $JOBACCT on the system or in OP mode from a BIM-FAQS/ASO
Online interface, or issue an SMSG from CMS to display the JOBACCT
information from the target VSE.

$JOBNAME displays a job running in a specified partition, or all partitions if no
partition ID is provided. BIM-FAQS/ASO is shipped with an AR command
"JOBNAME" in the FAQSASO command file. To use $§OBNAME, type
JOBNAME on the system or in OP mode from a BIM-FAQS/ASO Online
interface, or issue an SMSG from CMS to display the jobs on a target VSE.

$JOBNREP allows replies in BIM-FAQS/ASO through jobname.

$JOBTIME displays a count of jobs run since the last start of FAQSAO. Itis
called on // JOB messages occurring on the system console when the shipped
action file is used.

$JOBTIME uses global variables, which are saved between IMOD executions.
Global variables begin with an ampersand (&) and are not stem variables; global
variables are also CPU-specific.

The AOINIT IMOD sets the variables &aojob, &aodate, and &aotime. AOINIT is
run each time the FAQSAO task is enabled.

REXX User's Guide A-3

Sample IMODs

$LOG

$MESSAGE

$MSG

$NODESET

$PA

$LOG logs a VSE console message on another VSE.

$MESSAGE retrieves messages from the VSE hardcopy file and writing them
back to the console. $MESSAGE is invoked by the AR command "MESSAGE" set
up by default in the command file FAQSASO provided at installation.

$MSG retrieves a specified message from the BIM-FAQS/ ASO message file
(prior to VSE/ESA version 2) or the IBM message file and displays the messages
on the console. BIM-FAQS/ASO is shipped with an AR command "$MSG" in
the FAQSASO command file. To use this IMOD, type "$MSG mid" on the
system console or in OP mode from a BIM-FAQS/ASO Online interface.

$NODESET sets a global variable based on IST105I or 5B05I.

$PA allows a more powerful use of generics on POWER ALTERs. BIM-
FAQS/ASQO is shipped with the AR command "PA" in the FAQSASO command
file. To use $PA, type "PA que,..." on the system console or in OP mode from a
BIM-FAQS/ ASO Online interface. $PA parses the POWER ALTER command
and runs the POWER queue to check for generic matches. When a match is
found, the command is rebuilt with the matching name and the ALTER is
performed.

$PA allows the following generics:
= name*

= name++xx

= name==

[] name<<

A-4 GSS

Sample IMODs

$PHASE

$POST

$POWGET

$PWRCMD

$QT

$READCON

$PHASE displays a job running in a specified partition, or all partitions if no
partition ID is provided. BIM-FAQS/ASO is shipped with a AR command
"PHASE" in the FAQSASO command file. To use $PHASE, type "PHASE" on the
system or in OP mode from a BIM-FAQS/ ASO Online interface, or issue an
SMSG from CMS to display the jobs on a target VSE.

$POST posts an event that is waiting on a predecessor condition of
PROD=FAQSASO. BIM-FAQS/ASO is shipped with an AR command "POST"
in the FAQSASO command file. To use $POST, type "POST evt" on the system
console or in OP mode from a BIM-FAQS/ ASO Online interface. $POST can
also be invoked with an SMSG.

$POWGET is an example of how to access any POWER member and select by
page or line number.

$PWRCMD issues and retrieves POWER information on a CMS user console via
an SMSG or on the system console via XPCC communication to POWER. To use
$PWRCMD, type "PWRCMD" on the system or in OP mode from a BIM-
FAQS/ASO Online interface, or issue an SMSG from CMS to display the jobs on
a target VSE.

$QT displays the time in an English message on the console. $QT calls the
$TIME IMOD to perform the action function. $QT shows a sample of the call
function.

$READCON reads data from the console and echoes it back. $READCON is
provided only as a sample usage of READCONS().

REXX User's Guide A-5

Sample IMODs

$REPLID

$REPLY

$SCRIPT

$STATUS

$SUBMIT

$70

$REPLID uses the REPLYID() function to echo any outstanding replies to the
person that issued the command.

$REPLY replies to a partition based upon the partition identifier rather than the
reply ID. BIM-FAQS/ASO is shipped with AR commands 'BG' 'F1' ... 'FB' in the
FAQSASO command file. To use $REPLY, type "BG xxxxx" on the system
console or in OP mode from a BIM-FAQS/ ASO Online interface. $REPLY
replies to BG or queues a reply for BG. To clear a queued reply, type PRTY
REPLY CLEAR pid.

$SCRIPT formats help screens for online panels. $SCRIPT is provided as an
example of the real usage of some REXX instructions.

$STATUS displays a job running in a specified partition, or all partitions if no
partition ID is provided. BIM-FAQS/ASO is shipped with an AR command
"STATUS" in the FAQSASO command file. To use $STATUS, type STATUS on
the system or in OP mode from a BIM-FAQS/ ASO Online interface, or issue an
SMSG from CMS to display the jobs on a target VSE.

$SUBMIT shows an example of how to submit t a job directly from an IMOD.
This could be sued for BIM$RXBA or as a result of BIM-FAQS/ASO GSFAQS
message entries.

$TO replies to a partition based upon partition identifier rather than the actual
reply ID. BIM-FAQS/ASO is shipped with an AR command ">" in the
FAQSASO command file. To use $TO, type "> machine data" on the system
console or in OP mode from a BIM-FAQS/ ASO Online interface.

A-6 GSS

$ADDRESS Sample IMOD

$VTAM

$VTAM issues and displays a VTAM command. BIM-FAQS/ASO is shipped
with an AR command "$VTAM" in the FAQSASO command file. To use
$VTAM, type $SVTAM on the system or in OP mode from a BIM-FAQS/ASO
Online interface, or issue an SMSG from CMS to display the VTAM information
from the target VSE.

$ADDRESS Sample IMOD

*x*x*BEGIN FILE®®*>*x

/ /
/* $ADDRESS REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed as a sample of the address console */
/* function, which allows a IMOD to issue a reply or AR command. */
/* BIM-FAQS/ASO is shipped with an A/R command "ADDRESS" as a */
/* sample in the FAQSASO command file. To use this exec type */
/* "ADDRESS command™ on the system console or in OP mode from a */
/* BIM-FAQS/ASO Online interface. */
/ /
arg command /* cmd is set to the A/R cmd */

/* that invoked this IMOD and */
/* command is set to the cmd */
/* or reply to be issued to AR */

command = strip(command) /* strip off leading and */
/* trailing blanks. */

say "ADDRESS®" "-" date(w) "-" date() "-" time(Q

address CONSOLE command /* issue command */

if rc-=0 then do /* q. is there non-zero RETCODE*/

if rc=8 then say "Asynoc busy~
else say "Address Console failed rc="||rc
end

REXX User's Guide A-7

$ARG Sample IMOD

$ARG Sample IMOD

/ /
/* $ARG REXX PROCEDURE: CREATED 2/20/91 BY BOB SMITH */
/* */
/* This IMOD is designed to display args and environment data */
/* passed to an IMOD on the system console. */
/ /
arg cmd /* cmd is set to the A/R routine */

/* command that drove this IMOD. */
say "*"|lcmd]]|"*"

x=asoenv() /* get environment */
say "FTIx|T*"
parse var x env Ivl node imod pds type data
cmd="";action="";jobname="";phasename="";pid=""
user="";time=""
select
when type="$CMD" then cmd=data
when type="SMSG" then user=data
when type="ONLN" then user=data
when type="$MSG" then do
action=substr(data,1,12)
pid=substr(data,13,2)
Jjobname=substr(data,15,8)
phasename=substr(data,23,8)
time=substr(data,31,8)
end
when type="PCS" then do
event=substr(data,1,12)
diskargs=substr(data,13,2)
group=substr(data,b15,8)
data=substr(data,23,8)

end

otherwise nop
end
say "ENVIRONMENT® env
say "IMOD ® imod
say “Node * node
say "user " user
say "cmd * cmd
say "action " action
say "pid * pid
say "jobname * jobname

say "phasename " phasename
say "“time time

exit

A-8 GSS

$BEEPASO Sample IMOD

$BEEPASO Sample IMOD

/ /
/* $BEEPER REXX PROCEDURE: Created 01/09/90 by Dan Shannon */
/* Function: Satisfy BIM-FAQS/PCS BEEPER condition */
/ /
parse upper arg msg
/* __ */
/* get shift information */
/* */
/* if BIM-FAQS/PCS is present, this */
/* section could be replaced by a call to */
/* KDATE use PCS PROCESSING periods. */
/* __ */
d=date(w)
if d-="Saturday” & d-="Sunday" then d="Workday"
else d="Nonworkday*
day=right(date(0),2)
month=date(M)
select
when month="January®" then do
if day="1" then d="Holiday"
end
when month="December® then do
if day="25" then d="Holiday"
end
otherwise nop;
end
t=time()
t=substr(t,1,2)]|substr(t,4,2)
if ©="0800" & t<"1730" then shift="Day"
if ©>="1730" & t<"2400" then shift="Night~
if ©>="0000" & t<="0100" then shift="Night~
if t>="0100" & t<"0800" then shift="Home"
/* __ */
/* get environment information */
/* __ */
x=asoenv()
parse var x env lvl avl imod pds type data
/* __ -k/
/* find out what trigered imod */
/* __ -k/
select
/* __ -k/
/* Imod trigered by console message */
/* __ -k/
when type="$MSG" then do
action=substr(data,1,12)
pid=substr(data,13,2)
Jjobname=substr(data,15,8)
phasename=substr(data,23,8)
msgid = word(substr(msg,8),1)
if msgid="1S781" then do
msg =strip(strip(substr(msg,38,23),"b"," "),,"" ")
msg = msgid jobname msg
if d="Workday" then do
select
when shift="Day" then Cond="1" /* call 1 day */

when shift="Night" then Cond="11" /* call 1 night */
when shift="Home" then Cond="21- /* call 2 home */
otherwise exit
end
end
else do
Cond = "31* /* calllist 1 weekend */
end

REXX User's Guide A-9

$BEEPASO Sample IMOD

end
else do
if shift-="Day" then exit
if d="Workday" then cond="2"
else cond="32"

msg = msgid jobname

/* do not call
/* calllist 2 day time */
/* calllist 2 home */

end
end
/* __ */
/* Imod trigered by ar command */
/* __ */
when type="$CMD" then do
if d="Workday® then do
select
when shift="Day" then Cond="3* /* calllist
when shift="Night" then Cond="13" /* calllist
when shift="Home" then Cond="23" /* calllist
otherwise exit
end
end
else do
Cond = "33" /* calllist
end
end
/* __ */
/* Imod trigered by SMSG */
/* __ */
when type="SMSG" then do
user=data
msg = msg user
if d="Workday® then do
select
when shift="Day" then Cond="3* /* calllist
when shift="Night" then Cond="13" /* calllist
when shift="Home" then Cond="23" /* calllist
otherwise exit
end
end
else do
Cond = "33" /* calllist
end
end
/* __ */
/* Imod trigered by Event */
/* __ */
otherwise do
if d="Workday" then do
select
when shift="Day" then Cond="4- /* calllist
when shift="Night" then Cond="14" /* calllist
when shift="Home" then Cond="24" /* calllist
otherwise exit
end
end
else do
Cond = "34" /* calllist
end
end
/* end select */
end

say "Beeper condition® cond "SET by" type "(" msg

call $beeper "SET" cond msg

if result-="0" then say "$BEEPER Failed RC="]|result

exit

if not day */

day time */
week night*/
late night*/

weekend */

day time */
week night*/
late night*/

weekend */

day time */

week night*/
late night*/

weekend */

A-10 GSS

$CICSREP Sample IMOD

$CICSREP Sample IMOD

/ /
/* $cicsrep REXX PROCEDURE: CREATED 8/21/90 BY BOB SMITH */
/* updated 12/01/92 BY BOB SMITH */
/* support jobname */
/* This IMOD is designed to reply to a cics partition and to be */
/* called as an external procedure. */
/* */
/* FORMAT 1: Call $cicsrep pid "reply” */
/* */
/* FORMAT 2: Call $cicsrep jobname "reply” */
/* */
/ /
arg pid data /* pid is set to the partition to */

/* reply to, and data is the */

/* reply */

x=asoenv()

parse var x . vers .

if vers="ES2" then faqcmd="ASO"
else faqcmd="PRTY"

jobname=""
partitions=pidlist("B")
if length(pid)=2 then do
do i = 1 to length(partitions) by 2
if substr(partitions,i,2)=pid then do
jobname=pid
leave
end
end
end
else jobname=pid

do i = 1 to length(partitions) by 2
iT jobname=jobname(substr(partitions,i,2)) then do
pid=substr(partitions,i,2)

leave
end
end
p=phase(pid) /* */
Jj=jobname(pid) /* */
x=replid(pid) /* */
/* */
if rc=0 then do /* */
/* __ -k/
/* e CICS/ICCF partition —-—-———————————— */
/* __ -k/

iT p="DFHSIP" | p="DTSINIT" |p="BIM$UTTS" then do
if x="" then do
if p="DFHSIP" then address console "MSG® pid
else address console "/tc”

do i=1 to 10 until done
z=wait("1%)
done=replid(pid)-=" -

end

if -done then do
say j "did not respond to ""MSG" cmd]|"""- retry later”
exit
end
end
repl=strip(substr(replid(pid),4,4))
address console repl data

REXX User's Guide A-11

$CMSREP Sample IMOD

do i=1 to 10 until done
z=wait("1")
done=replid(pid)-=" -
end
if done then do
z=wait("1")
address console repl

end
end
/* __ */
[/* ——————— Not a cics partition ————-———————————— */
/* __ */
else do

if x="" then do
say "There are no replies outstanding for® pid
say "Reply will be held until required by" pid
say "To cancel issue” fagcmd "REPLY CANCEL*
address console fagcmd “"REPLY® pid data
end
else do
reply=strip(substr(x,4,4))
address console repl data
end
end
end
else do
say "Replid failure rc="]|d2x(rc)
end
exit

$CMSREP Sample IMOD

/ /
/* $CMSREP REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* */
/* This IMOD is designed as a working IMOD to do a reply or command */
/* via SMSG on from another machine. This exec will echo the */
/* reply back to the USER that invoked this exec, or report on any */
/* errors. */
/* */
/* FORMAT: SMSG machine ASO $CMSREP cmd/reply */
/* */
/* machine is the VSE machine name */
/* ASO is an identifier for BIM-FAQS/ASO to trigger */
/* that an IMOD name is the next blank delimited*/
/* parm. */
/* $CMSREP The IMOD to executed. */
/* cmd/reply The command or reply to be issued to VSE */
/* */
/* Note: This may be accomplished via the following format without */
/* the use of a rexx IMOD */
/* FORMAT: SMSG machine OP cmd/reply */
/ /
arg command

fuser=strip(substr(word(cpuid(),2),1,8)) /* get vm machine name */
x=asoenv() /* get environment */
parse var x . . . imod . type user /* see $args for description */
if type -="SMSG" then do /* q. was this invoked vis SMSG */

say "$CMSREP error - improper environment call:" type
exit
end

A-12 GSS

$CMSREP Sample IMOD

command = strip(command) /*
/*
say ">" imod user command /*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

address CONSOLE command /*

if rc=0 then do /*

strip off leading and */
trailing blanks. */
echo command to console */
______________________________ */

issue a cp command to display */
information to the cms user. */
note: a stem variable z. is */
used on the CP function, */
this is required since */
this function is designed*/
to return data back to */
the caller. */
______________________________ */

issue the command via asynoc */

check for any errors */

/* echo command or reply to user */

say "smsg" user "ASO $LOG <~
z.=cp(“smsg” user "ASO $LOG <~

end

fuser command
fuser command)

else do /* check for any errors */

/* Report error back to user vis

cp msg */

if rc-=8 then z.=cp("smsg" user "ASO $LOG <" fuser "Asynoc busy")

else ,

z.=cp(“smsg” user "ASO $LOG <" fuser "Address Console failed rc="||rc)

end /* end error check do */

exit

REXX User's Guide A-13

$CONSOLE Sample IMOD

$CONSOLE Sample IMOD

/ /
/* $CONSOLE REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed as a sample of the address console */
/* function, which allows a IMOD to issue a reply or AR command. */
/* BIM-FAQS/ASO is shipped with a A/R command "CONSOLE"™ as a sample */
/* in the FAQSASO command file. To use this exec type */
/* "CONSOLE command™ on the system console or in OP mode from a */
/* BIM-FAQS/ASO Online interface. */
/ /
arg command /* cmd is set to the A/R cmd */
command = strip(command) /* strip off leading and */

/* trailing blanks. */
x=asoenv() /* get environment */
parse var X type user /* see $args for description */

say "CONSOLE®" "-" date(w) "-" date() "-" time(Q
if command -="" then do

address CONSOLE command /* issue the command via asynoc*/
if rc-=0 then do /* check for any errors */
/* Report error back to user */

if rc-=8 then say "Asynoc busy"
else say "Address Console failed rc="||rc

end /* end error check do */
end
else say "No command provided*
exit
$CP Sample IMOD
/ /
/* $CP REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* */
/* This IMOD is designed to issue and display VM/CP commands */
/* and information on the VSE console. */
/* BIM-FAQS/ASO is shipped with a A/R command "CP*" in the FAQSASO */
/* command file. To use this exec type CP cpcmd on the system */
/* or in op mode from a BIM-FAQS/ASO online interface. */
/* */
/* CP Command */
/* */
/* CP DISConnect - contains support for VM/XA disconnect doc */
/* mode console. IBM does not support under */
/* VM/XA pre VSE/SP4. So this IMOD is provided. */
/ /
arg cpcmd /* cpcmd is the CP command to */
/* issue. */
cpcemd = strip(cpcmd) /* ensure no leading or trailing */
/* blanks. */
say "VM/CP® "-" date(w) "-" date() "-" time(Q
if cpcmd="" then do /* if user did not pass us a CP */
say "No CP command specified” /* command then report and just */
exit /* exit the IMOD */
end
z.="" /* set the STEM variable to Null */

A-14 GSS

$CPUUSE Sample IMOD

/* check to see if user did DISC */
if abbrev("DISCONNECT",cmd,4)=0 then do

z.=cp(cpcmd) /* set the STEM variable to what */
/* the vm/cp command returns */
/* Note: z.0 is number of STEMS */
/* that are set for loop */
if rc=0 then do /* cp function completed */
do i=1 to z.0 /* loop for number of lines */
if z.i =" then leave /* sample leave usage */
say strip(z.i) /* echo data to the console */
end /* end loop */
end /* end do */
else do /* else report error to console */

say "CP failed rc="||rc
end /* end do */

end
else do /* We have DISC. .. */
z.=cp("Q V CONS™) /* find Virtual console */
if word(z.1,1)="CONS" then do /* did we get right data ? */
vecons=right(word(z.1,2),3) /* y. then parse 2nd word for 3 */
z.=cp("RESET" vcons) /* issue cp reset on VCONS */
z.=cp("DISC™) /* issue cp disc */
end /* end do */
end /* end else do */
exit

$CPUUSE Sample IMOD

/ /
/* $CPUUSE REXX PROCEDURE: CREATED 11/01/01 BY Ken Meyer */
/* */
/* This IMOD is designed to allow you to determine what partition */

/* or partitions is using a large amount of CPU by issuing multiple */
/* $JOBACCT commands every x seconds over a period of y seconds and */

/* then reporting on the results. */
/* */
/* VSE */
/* FORMAT: $CPUUSE pid interval duration */
/* */
/* */
/* $CPUUSE The IMOD to executed. */
/* pid partition id to check or ALL */
/* interval number of seconds between requests */
/* duration number of seconds to use as a sample */
/* */
/ /
say "$CPUUSE " "-" date(w) "-" date() "-" time(Q

hdrl="Ptn Job Phase Intv CPU "

hdrl=hdrl]|" Start CPU S10S*

hdr2="1d Name Name Secs 100s "

hdr2=hdr2|]* 1/0s /Sec /Sec”

hdr3="-- ---—- ———= ——— - "

hdr3=hdr3||* ---- —-—— —-——-"

hflg=1

arg pid intv duratn /* get args */
pid = substr(strip(pid),1,2) /* parse partition id */

pidlist=pid

REXX User's Guide A-15

$CPUUSE Sample IMOD

if Iintv="" | datatype(intv) <>"NUM" then intv=0
if duratn="" | datatype(duratn)<>"NUM" then duratn=30
if intv<l then intv=duratn

loopcnt=duratn%intv+1
it loopcnt<2 then loopcnt=2

do cnt=1 to loopcnt
strt=time("R")
if pidlist="AL" then pid=pidlist("B")
J=length(pid)%2
do i =0 to j-1
y=substr(pid, i*2+1,2)
Xx=jobacct(y)
if rc=0 then do
parse upper var x 1 jnam 10 pnam 19 jtim stim cpus sios
parse var jtim jhr*_"jmn"_"jse
parse var stim shr®."smn"."sse
parse var cpus cse-"."cms
if strip(Jhr)="" then iterate
tcpu=cse]| | left(cms,2,"0")
Jjsec=(Jhr*60+jmn)*60+jse
ssec=(shr*60+smn)*60+sse
isecs=0
icpus=0
icsta=0
issta=0
Jjnam=left(strip(nam),8)
pnam=left(strip(pnam),8)
if jobname.y<>jnam then do
Jobname.y=jnam
phaname.y=pnam
end
else if jsec>jobtime.y then do
isecs=jsec-jobtime.y
icpus=tcpu-cpusecs.y
icsta=(icpus/isecs*1000+5)%10/100
isios=sios-numsios.y
issta=(isios/isecs*1000+5)%10/100
end
ptn=left(y,3)
jobtime.y=jsec
stetime.y=ssec
cpusecs.y=tcpu
numsios.y=sios
if cnt>1 then do
parse var icsta nm"."dc
icsta=right(nm,7," ")|]|"-"]lleft(dc,2,"0%)
parse var issta nm"."dc
issta=right(nm,7," ")||"-"]lleft(dc,2,"0%)
isecs=right(isecs,6)
icpus=right(icpus,6)
isios=right(isios,8)
if hflg then do

hflg=0
say hdrl
say hdr2
say hdr3

end

say ptn jnam pnam isecs icpus isios icsta issta

end
end
end i /* end user did not specify pid */

if cnt<loopcnt then do
parse value time("E") with wtim®."msec

A-16 GSS

$CYCLE Sample IMOD

if wtim="" then wtim=0
if left(msec,1)>="5" then wtim=wtim+1
wtim=intv-wtim
z=wait(wtim)
end
end cnt
say "$CPUUSE Done*

exit

$CYCLE Sample IMOD

/ /
/* $CYCLE REXX PROCEDURE: CREATED 8/21/90 BY Dan Curwin */
/* updated 02/20/91 support new asoenv call */
/* updated 12/01/92 support jobname call */
/* */
/* This IMOD is designed to cycle a cics terminal controlled by */
/> VTAM. */
/* */
/* FORMAT: CYCLE pid TERMINAL */
/* CYCLE F2 L080 */
/* */
/* FORMAT: CYCLE jobname terminal */
/* CYCLE PRODCICS L080 */
/ /
arg pid data pcst /* pid is set to the partition to */
/* data is the terminal to cycle */
term=" * /* */
node=" * /* */
pcs=1 /* set pcs on */
if pcst="NOPCS" then pcs=0 /* testing purposes, this IMOD */
/* validates PCS dynamically */
call validpid /* validate pid specified */
if rc-=0 then exit
/* __ */
/* check it termid or nodname: else error */
/* __ */
select

when length(data) = 4 then term=data

when length(data) > O then node=data

otherwise do
X="BIM-FAQS/ASO- You must specify a term-id or Nodename®
x=x "for $CYCLE"

exit
end
end
/o */
/* take terminal out of service in cics: */
/oo */

if term -=" " then do
say "Term® term "is being cycled in partition® pid
x=pid "CEMT S TER(" || term ||") OUT"

call cicscmd /* perform cics command */
call getnode /* parse node from cics command */
if rc-=0 then do
say ,
"BIM-FAQS/ASO- Term-id" term “undefined/not in session with CICS”
exit
end

REXX User's Guide A-17

$CYCLE Sample IMOD

end

w=wait("1") /* wait 1 second to allow comp.

/* terminal out of service in cics: not inactivate in vtam.

/* e

disable="V NET, INACT, ID="]|node]|",F"

enable="V NET,ACT, ID="] |node

say "Node" node "is being cycled in partition® pid
call vtamcmd

/*

/* If term defined then bring back into service with acquire.

/*

if term-=" " then do
x= pid "CEMT S TER("|lterm|]") INS ACQ"
call cicscmd
end
say "Cycle of" term node “completed in partition® pid
exit

/* page eject */

J* e

/* cicscmd:

/* e

cicscmd:

cics.=""

if pcs=1 then address cics X /* try BIM-FAQS/PCS jclrcics
/* interface. This set the stem
/* var cics.

if -datatype(cics.0,"N") then pcs=0

if rc-=0 | pcs=0 then do /* Pcs not enabled or error
pcs=0 /* set pcs invalid
call $cicsrep x /* do it the hard way
cics.="" /* clear stem variable
cics. = message(pid,"8") /* read the console
end
return

/* page eject */

J* e

/* get NODE

/* e

getnode:
node=""
if pcs=1 then do
do i=1 to cics.0 while node=""
if word(cics.i,1)="TER("||term]]|")" then do

J=i+l
parse var cics.j - "NET(" node *)*
J=i+2
if node="" then parse var cics.j . "NET(" node ")*
end
end
end
else do

do i=1 to cics.0
if word(cics.i,3)="Ter("||term|]|")" then

do
j=i-1
parse var cics.j . "Net(" node *)*
if node="" then do
j =i-2
parse var cics.j - "Net(" node *)*
end
leave
end

end

*/

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

A-18 GSS

$CYCLE Sample IMOD

end

node=strip(node)

if node=" " then rc=16
return

___ */
/* issue vtam command with interface on console commands */
/* ___ */
vtamemd:
/* ___ */
/* the following command requires the vtam applid for FAQSVSPO */
/* be defined to vtam and the subtask FAQSVSPO be running in */
/* the same partition as FAQSASO. If this is not the case, */
/* this exec will rely on console commands to cycle the node. */
/* ___ */
z.=vtam(disable, "4")
if rc=0 then do
do i=2 to z.0
say "CYCLE® z.i
end
z.=vtam(enable, "4%)
do i=2 to z.0
say "CYCLE" z.i
end
end
else do
/* __ */
/* the following global variable is set via a message action for */
/* istl05i1 or 5BO051 which clears the global variable */
/* There are actions defined in the supplied FAQSASO action file */
/* which runs the IMOD $NODESET to set the appropriate global */
/* variable. */
/* */
/* These actions may be copied to your file simply by editing */
/* the entries for VTAM IST1051 and VTAM 5B051 entries in */

/* the FAQSASO file and then changing the file name at the top */
/* right ==> FAQSASO <== to your file name and then pressing */
/* PFO5 */
/* __ */
address console disable
&node.node="WAITING"
do i=1 to 10 until &node.node -="WAITING"
=wait()
end
if &node.node="WAITING" then do

drop &node.node

say "BIM-FAQS/ASO Unable to inactivate node® node

rc=99

exit

end
else do

address console enable

y=wait("5")

end
end
return
/* ___ -k/
/* check for 2 character pid */
/* ___ -k/
validpid:

jobname=""

partitions=pidlist("B")

if length(pid)=2 then do
do i = 1 to length(partitions) by 2
if substr(partitions,i,2)=pid then do

REXX User's Guide A-19

$CYCLE Sample IMOD

jobname=pid
leave
end
end
end
else jobname=pid

if jobname="" then do
say "BIM-FAQS/ASO - You must specify a Ptn id or a Jobname -" pid
exit

end

do i = 1 to length(partitions) by 2
if jobname=jobname(substr(partitions,i,2)) then do
pid=substr(partitions,i,2)
leave
end
end

p=phase(pid)

if rc-="0" then do
say "BIM-FAQS/ASO - Bad PID * pid
return
end

if p-="DFHSIP" & p-="DTSINIT" then do
say "BIM-FAQS/ASO - Wrong partition® pid "not CICS or ICCF*
rc=16
return
end
return

A-20 GSS

$DC Sample IMOD

$DC Sample IMOD

/ /
/* $DC REXX PROCEDURE: CREATED 9/27/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed to retrieve a specified messages from */
/* the VSE hardcopy file and route them back to a VM/CMS user. */
/* This IMOD is invoked via a SMSG to the VSE machine to obtain */
/* console displays. */
/* */
/* SMSG machine ASO DC pid cnt scan */
/* ASO machine DC pid cnt scan */
/* */
/* machine is the VSE machine name */
/* AO is an identifier for BIM-FAQS/ASO to trigger that */
/* an IMOD name is the next blank delimited parm. */
/* DC The IMOD to executed. */
/* pid optional partition id. 1E (BG F1 f2,...) */
/* cnt number of messages to return. The default is 20. */
/* scan Scan data to retrieve messages that contain the */
/* specified scan data. */
/* */
/* Note: periods (.) may be used as a place marker. */
/* */
/* SMSG DEVVSE ASO DC (display the last 20 messages */
/* SMSG DEVVSE ASO DC BG (display 20 msgs from bg) */
/* SMSG DEVVSE ASO DC . 30 (display the last 30 msgs) */
/* SMSG DEVVSE ASO DC F9 5 // JOB (display last 5 jobcards in F9) */
/* */
/ /
arg pid cnt scan
pid = substr(pid,1,2) /* ensure 2 character pid */
if pid=" ° then pid="" /* set pid to null if blanks */
if pid="_." then pid=""* /* if pid is period then set null*/
if cnt="_" then cnt="" /* if cnt is period then set null*/
if scan="_" then scan="" /* if scan is "." then set null */
say "MESSAGE®" "-" date(w) "-" date() "-" time(Q)
z.="" /* set the STEM variable to Null */
z.=message(pid,cnt,scan) /* set the STEM variable to with */
/* desired messages. */
/* Note: z.0 is number of STEMS */
/* that are set for loop */
if rc=0 then do /* Message found */
z.0=z.0+1-1
do i=z.0 to 1 by -1 /* loop backwards for the number */
/* of lines returned */
say substr(z.i,1,80)
end /* end loop */
end /* end do for message found */
else do /* else we had a function failure*/
say "MESSAGE failed rc="||rc
end /* end do for message failure */
exit

$EOJ Sample IMOD

REXX User's Guide

A-21

$GETVIS Sample IMOD

$GETVIS Sample IMOD

/ /
/* $EO0J REXX PROCEDURE: CREATED 9/04/90 BY Bob Smith */
/* */
/* This IMOD is designed echo the time at eoj and set the global */
/* variable &job.pid */
/* */
/* at eoj &job.pid="" */
/* at job &job.pid="jobname* */
/* */
/ /
x=asoenv() /* get environment */
parse var x env Ivl avl imod pds type data
pid=""*

if type="$MSG" then do

pid=substr(data,13,2)

end
&job.pid=""* /* set global variable to null */
call $time
say result
exit
/ /
/* $GETVIS REXX PROCEDURE: CREATED 6/24/90 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed to display getvis information by partition */
/* specified or all partitions if no partition id is provided. */
/* BIM-FAQS/ASO is shipped with an A/R command "$GETVIS" in the */
/* FAQSASO command file. To use this exec type $GETVIS on the system */
/* or in op mode from the online interface or issue an SMSG from */
/* CMS to display the getvis information for the target VSE. */
/* */
/* VSE */
/* FORMAT: $GETVIS pid */
/* */
/* $GETVIS asynoc command defined in a CONSOLE command */
/* definition file. */
/* pid Optional partition id, if not specified */
/* all partitions will be displayed. */
/* CMS */
/* FORMAT: SMSG machine ASO $GETVIS pid */
/* ASO machine GETVIS pid */
/* */
/* machine is the VSE machine name */
/* ASO is an identifier for BIM-FAQS/ASO to trigger */
/* the IMOD and pass parms */
/* */
/* $GETVIS The IMOD to be executed. */
/* pid Optional partition id, if not specified */
/* all partitions will be displayed. */
/ /
arg pid /* get pid */
pid = substr(strip(pid),1,2) /* parse partition id */
if pid="SV" then pid="AR"
x=asoenv() /* get environment */
parse var X type user /* see $args for description */

say "GETVIS®™ "-" date(w) "-" date() "-" time(Q
say " Length Max Free Used Max*™
say " Getvis Used Getvis Getvis Block™

A-22 GSS

$GETVIS Sample IMOD

if pid-="" then do /* user specified a PID
x=getvis(pid) /* get getvis for specified pid
if rc=0 then do /* echo pid and getvis
y=pid
call getdspl y x
end

/* else echo error

*/
*/
*/

*/

else say "Jobname failed rc="||rc "pid="]|pid

end /* end user specified pid */
else do /* user did not specify pid */
pid=pidlist("B")|| "AR" /* set possible pids */
J=length(pid)%2 /* calculate # of Pids in string */
doi =0 to j-1 /* loop for number of pids-1 */
y=substr(pid, i*2+1,2) /* calculate index to pid strng */
x=getvis(y) /* get getvis for pid y */
if rc=0 then do /* echo pid and getvis */
call getdspl x
end
/* else echo error */
else say "Getvis failed rc="||rc “pid="]||y
end /* end user did not specify pid */
end
exit
/* page eject */ /* page eject for fagsutil print */
/ /
/* getdspl: get display information. */
/ /

getdspl:

parse var x ctllen maxused free used contig

total=free+used
total=substr(strip(total,l,"0")|]|"K",1,9)
maxused=substr(strip(maxused,1,*0")||"K",1,9)
free=substr(strip(free,1,"0")]]"K",1,9)
used=substr(strip(used,1,"0")||"K",1,9)
contig=substr(strip(contig,,"0")|]"K",1,9)

if total="K" then say "Getvis Area for®™ y "Not Initialized”

else say y total maxused free used contig

return

REXX User's Guide A-23

$JOB Sample IMOD

$JOB Sample IMOD

/ /
/* $job REXX PROCEDURE: CREATED 9/04/90 BY Bob Smith */
/* */
/* This IMOD sets the global variable &job.pid and calls the imod */
/* $jobtime */
/* */
/* at eoj &job.pid="" */
/* at job &job.pid="jobname* */
/* */
/ /
x=asoenv() /* get environment */
parse var x env lvl avl imod pds type data
pid=""*
if type="$MSG" then do
pid=substr(data,13,2)
job=substr(data,15,8)
end
&job._pid=job /* set global variable to null */
say &job.pid
call $jobtime
exit
$JOBACCT Sample IMOD
/ /
/* $JOBACCT REXX PROCEDURE: CREATED 10/16/90 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed to issue and display job accounting info. */
/* BIM-FAQS/ASO is shipped with a A/R command "$JOBACCT" in the */
/* FAQSASO command file. To use this exec type $JOBACCT on the */
/* system or in op mode from the online interface or issue an SMSG */
/* from CMS to display the JOBACCT information from the target VSE. */
/* */
/* VSE */
/* FORMAT: $JOBACCT pid */
/* */
/* CMS */
/* FORMAT: SMSG machine ASO $JOBACCT pid */
/* ASO machine JOBACCT pid */
/* */
/* machine is the VSE machine name */
/* ASO is an identifier for BIM-FAQS/ASO to trigger */
/* that an IMOD name is the next blank delimited */
/* parm. */
/* $JOBACCT The IMOD to executed. */
/* pid command to display jobacct information */
/ /
arg pid /* get pid */
pid = substr(strip(pid),1,2) /* parse partition id */
say "$JOBACCT" "-" date(w) "-" date() "-" time(Q
say " Job Phase Job Step Cpu] (o
say " Name Name Duration Duration Seconds Count*
if pid-="" then do /* user specified a PID */
Xx=jobacct(pid) /* get JOBACCT for specified pid */
if rc=0 then do /* echo pid and jobacct */

y=pid
say y X
end

A-24 GSS

$JOBACCT Sample IMOD

/* else echo error */
else say "JOBACCT failed rc="]|rc "pid="]|pid
end /* end user specified pid */
else do /* user did not specify pid */
pid=pidlist("B") /* set possible pids */
J=length(pid)%2 /* calculate # of Pids in string */
doi =0 to j-1 /* loop for number of pids-1 */
y=substr(pid, i*2+1,2) /* calculate index to pid string*/
X=jobacct(y) /* get JOBACCT for pid y */
if rc=0 then do /* echo pid and jobacct */
say y X
end
/* else echo error */
else say "JOBACCT failed rc="||rc "pid="]|y
end /* end user did not specify pid */
end
exit

REXX User's Guide A-25

$JOBNAME Sample IMOD

$JOBNAME Sample IMOD

/ /
/* $JOBNAME REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed to display a job running in a partition */
/* specified or all partitions if no partition id is provided. */
/* BIM-FAQS/ASO is shipped with a A/R command "JOBNAME" in the */
/* FAQSASO command file. To use this exec type JOBNAME on the system */
/* or in op mode from a the online interface or issue an SMSG */
/* from CMS to display the jobs on a target VSE. */
/* */
/* VSE */
/* FORMAT: JOBNAME pid */
/* */
/* JOBNAME asynoc command defined in a CONSOLE command */
/* definition file. */
/* pid Optional partition id, if not specified */
/* all partitions will be displayed. */
/* CMS */
/* FORMAT: SMSG machine ASO $JOBNAME pid */
/* ASO machine JOBACCT pid */
/* */
/* machine is the VSE machine name */
/* ASO is an identifier for BIM-FAQS/ASO to trigger */
/* that an IMOD name is the next blank delimited */
/* parm. */
/* $JOBNAME The IMOD to be executed. */
/* pid Optional partition id, if not specified */
/* all partitions will be displayed. */
/ /
arg pid /* get pid */
pid = substr(strip(pid),1,2) /* parse partition id */
say "JOBNAME®" "-" date(w) "-" date() "-" time(Q)
if pid-="" then do /* user specified a PID */
Xx=jobname(pid) /* get jobname for specified pid */
if rc=0 then say pid x /* echo pid and jobname */
/* else echo error */
else say "Jobname failed rc="||rc "pid="]|pid
end /* end user specified pid */
else do /* user did not specify pid */
pid=pidlist("B") /* set possible pids */
J=length(pid)%2 /* calculate # of Pids in string */
do i =0 to j-1 /* loop for number of pids-1 */
y=substr(pid, i*2+1,2) /* calculate index to pid string*/
Xx=jobname(y) /* get jobname for pid vy */
if rc=0 then say y x /* echo pid and jobname */
/* else echo error */
else say "Jobname failed rc="]|rc "pid="]]y
end /* end user did not specify pid */
end
exit

A-26 GSS

$JOBNREP Sample IMOD

$JOBNREP Sample IMOD

/ /
/* $JOBNREP REXX PROCEDURE: CREATED 03/28/01 BY Ken Meyer */
/* */
/* This IMOD is designed to reply to a partition based upon */
/* partition jobname rather than the actual reply id. */
/* This IMOD will reply to the partition with the job name */
/* provided. |If no message is outstanding, the reply will be */
/* QUEUED. To clear a QUEUED reply, type PRTY REPLY CLEAR pid */
/* on pre-vse/esa 2 systems, or type ASO REPLY CLEAR pid */
/ /
arg jnam rep /* cmd is set to the A/R cmd

/* that invoked this IMOD and

/* rep is set to the reply

x=asoenv()
parse var X . vers . imod .

type pid

if vers="ES2" then faqcmd="ASO*"

else faqcmd="PRTY"
if type-="$CMD" then do

say imod "only supported via an AR command®

exit
end
Jnam=translate(jnam)
jct=0
pid=pidlist("B") /* set possible pids
J=length(pid)%2 /* calculate # of Pids in string

doi =0 to j-1
y=substr(pid, i*2+1,2)
Xx=jobname(y)
if x=jnam then do

jct=jct+l
jtab_jct=y
end

end i

if jct=0 then do

/*

/*

loop for number of pids-1
calculate index to pid string
get jobname for pid y

put partition id in table

end user did not specify pid

say "There are no partitions with the jobname:® jnam

exit
end
pid=jtab.1
if jct>1 then do

say "There are multiple partitions with the jobname:" jnam
say "select one from the following list:*

plist=""
pwork=""
do i=1 to jct
plist=plist]|jtab.i
pwork=pwork] |jtab.i
if 1//20=0 then do
say plist
plist=""
end
end i

if plist<>"" then say plist

pid=""
do while pid="*

x=readcons(“Enter partition id to select®)

if x=" " then do

say "The reply to®" jnam “was ignored*

exit
end

y=wordpos(translate(x),

if y>0 then pid=jtab.y

pwork)

*/
*/
*/

*/

REXX User's Guide

A-27

$JOBNREP Sample IMOD

end
end
rlen=3
if vers="ES2" then rlen=4
x=replid(pid)
if rc=0 then do
x=strip(x)
if length(x)>7 then do
say "There are multiple reply ids for the partition:
say "select one from the following list:*
rlist=""
rwork=""
do i = 1 to words(x)
rlist=rlist]|strip(substr(word(x,1),4))||" *
rwork=rwork] |strip(substr(word(x,1),4)||" *
if 1//10=0 then do
say rlist
rlist=""
end
end
if rlist<>"" then say rlist
xX=""
do while x="*
x=readcons("Enter reply id to select”)
if x=" " then do
say "The reply to® pid “"was ignored”
exit
end
x=right(x,rlen,"0")
if wordpos(x,rwork)=0 then x=""
end
end
else x=strip(substr(x,4))
if x=" " then do
say "No outstanding replies for® pid “reply is queued”
ADDRESS CONSOLE faqcmd "REPLY®™ pid rep

end
else ADDRESS CONSOLE x rep
end
else do
say "REPLID FAILURE RC="d2x(rc)
end
exit /* exit IMOD

pid

*/

A-28 GSS

$JOBTIME Sample IMOD

$JOBTIME Sample IMOD

/
/*
/>
/*
/*
/*
/>
/*
/>
/*
Vi
/*

$JOBTIME REXX PROCEDURE: CREATED 2/10/90 BY BOB SMITH

This IMOD is designed to display a count of jobs run since
the last start of FAQSAO. It is called on // JOB messages
occurring on the system console when the shipped action file
is used. This exec uses global variables which are saved
between IMOD executions. They are CPU specific. Global
variables begin with an & and are not a stem variable.

The IMOD AOINIT sets the variables &aojob, &aodate and
&aotime. This exec is run each time the FAQSAO task is
enabled.

/

it datatype(&aojob)-="NUM" then &aojob=0
/* precaution for null variable or bad variable. */
&aojob=&aojob+1 /* increment the job count

*/

say "This is the start of job number® &aojob "since® &aodate &aotime

exit
return

$LOG Sample IMOD

$LOG REXX PROCEDURE: Created 6/13/90 By Bob Smith
updated 02/20/91 support new asoenv call
updated 03/17/93 add address ao say console
Log a message from one VSE to another

ex

arg msg
address A0 "SAY CONSOLE*
x=length(msg)-10
if x>70 then do

y=substr(msg,Xx,8)

if substr(y,3,1)=":" & substr(y,6,1)=":" then do

msg=strip(substr(msg,1,x-1))
end
end

say msg
it

$MESSAGE Sample IMOD

/ /
/* $MESSAGE REXX PROCEDURE: CREATED 9/27/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed as a sample for retrieving messages */
/* the VSE hardcopy file and writing them back to the console. */
/* This IMOD is invoked by the A/R command MESSAGE set up by */
/* default in the command file FAQSASO provided at install. */
/* */
/* MESSAGE pid cnt scan */
/* */
/* pid optional partition id. 1E (BG F1 f2,...) */
REXX User's Guide A-29

$MSG Sample IMOD

/* cnt number of messages to return. The default is 20. */
/* scan Scan data to retrieve messages that contain the */
/* specified scan data. */
/* */
/* Note: periods (.) may be used as a place marker. */
/* */
/* MESSAGE (display the last 20 messages */
/* MESSAGE BG (display 20 msgs from bg) */
/* MESSAGE . 30 (display the last 30 msgs) */
/* MESSAGE F9 5 // JOB (display last 5 jobcards in F9) */
/* */
/ /

arg pid cnt scan

id = strip(substr(pid,1,2))
f pid="." then pid=""

if cnt="_" then cnt=""
f

scan="." then scan=""

/* cmd is set to DC, user is the */
/* cms user that did smsg to run */
/* this IMOD. PID is the */
/* partition to display or null */
/* or period for a filler. Cnt */
/* is the number of messages to */
/* return. Scan is scan data */

/* ensure 2 character pid or null*/
/* if pid is period then set null*/
/* if cnt is period then set null*/
/* if scan is "." then set null */

say "MESSAGE®" "-" date(w) "-" date() "-" time(Q)

Z.=

z.=message(pid,cnt,scan)

if rc=0 then do

do i=1 to z.0

$MSG Sample IMOD

/* set the STEM variable to Null */

/* set the STEM variable to with */

/* desired messages. */
/* Note: z.0 is number of STEMS */
/* that are set for loop */
/* Message found */
/* loop for each message */
/* ______________________________ */

/* loop for each message assigned*/
/* in the stem variable. Messages*/
/* are placed in the stem in LIFO*/
/* order, since they are built */
/* as the hardcopy file is read */

/* backwards from the current */
/* point. There is a sample IMOD*/
/* $DC which displays the */
/* in the standard visual output */
/* format. */
/* ______________________________ */
say substr(i,1,2) substr(z.i,1,68)

end /* end loop */
end /* end message */
else do /* else report error */

say "MESSAGE failed rc="]|rc
end /* end do */

exit

/ /
/* $MSG REXX PROCEDURE: CREATED 12/11/89 BY BOB SMITH */

A-30 GSS

$NODESET Sample IMOD

/*

/* This IMOD is designed to
/* the BIM-FAQS/ASO message
/* message file and display
/* shipped with a A/R command "'$MSG"

*/
retrieve a specified message from */
VSAM file (pre=vse/esa 2), or the IBM */
it on the console. BIM-FAQS/ASO is */

in the FAQSASO command file. */

/* To use this exec type "$MSG mid" on the system console or in OP */

/* mode from the online interface. */
/ /
arg mid . /* cmd is set to the A/R cmd */

say "MSG® "-" date(w) "-" date(Q)

z.=""
z.=msg(mid)

if rc=0 then do

do i=1 to z.0
say strip(z.i,t)

$NODESET Sample IMOD

/* that invoked this IMOD and */
/* mid is set to the message to */
/* echoed to the system console */

-" time(Q

/* set the STEM variable to Null */
/* set the STEM variable to MSG */
/* Note: z.0 is number of STEMS */

/* that are set for loop */
/* Message found */
/* loop for number of lines */

/* Echo to the console but strip */
/* trailing blanks first

end /* end loop */
end /* end do */
else do /* Error on msg(Q) */
say "MSG failed rc="||rc /* echo return code on console*/
end /* end do */
exit /* exit IMOD */
/ /
/* $NODESET REXX PROCEDURE: Created 8/27/90 By Bob Smith */
/* and Andy Jezerski */
/* set a global variable based upon IST1051 */
/* and 5B051 */
/ /
arg msg
/* MSG=F3 003 IST1051 D72L802 NODE ... */
/* MSG=F3 003 5b05i d772L802 NODE .. */
mnum=substr(msg,8,5) /* get message number trigger */
if mnum="5B051" then node=substr(msg,14,8)
else node=substr(msg,16,8)
parse var node node . /* get rid of any extra chars */
/* if node name It 8 chars. */
node=strip(node) /* ensure leading and trailing*/
/* blanks gone */
&node.node="" /* set node stem to null */
exit

REXX User's Guide A-31

$PA Sample IMOD

$PA Sample IMOD

$PA

REXX PROCEDURE: CREATED 1/18/90 BY BOB SMITH

This IMOD is designed to allow a more powerful use of
generics on POWER ALTERS. BIM-FAQS/ASO is shipped with an A/R
command PA in the FAQSASO command file. To use the exec type

"PA que,..."

on the system console or in OP mode from the

online interface. This exec will parse the POWER alter
command and run the POWER queue to check for generic matches
is rebuilt with the
matching name and the alter is performed.

When a match is found the command

This IMOD allows generics of:

name*
name++xx
name==
name<<

arg data
data=translate(data,” *,",")
cjob=""
error=""
pque=""~
pjob="*
pclass=""
ppri=""-
pfno=""
fnode=""
tnode=""
fuser=""
tuser=""
pdisp=""*
psysid=""*
afno=""
acopy=""
adest=""
adisp=""
anode=""
auser=""
aclass=""
asysid=""
aremote=""
acmpact=""

/*

parse var data pque data
/* parse power parms */
do i=1 to words(data)

pwrparm=word(data,i)

select;

/* power search parms */
when "CPRI= " =left(pwrparm,5)
when “CFNO=" =left(pwrparm,5)
when "TNODE=" =left(pwrparm,6)
when “FNODE=" left(pwrparm,6)
when "TUSER=" left(pwrparm,6)
when "FUSER=" =left(pwrparm,6)
when "CDISP=" =left(pwrparm,6)
when "CCLASS=" =left(pwrparm,7)
when "CSYSID=" =left(pwrparm,7)
/* power action parms */

parse

then
then
then
then
then
then
then
then
then

data into words */

ppri=right(pwrparm,1)
pfno=substr(pwrparm,6)
tnode=substr(pwrparm,7)
fnode=substr(pwrparm,7)
tuser=substr(pwrparm,7)
fuser=substr(pwrparm,7)
pdisp=right(pwrparm,1)
pclass=right(pwrparm,1)
psysid=right(pwrparm,1)

A-32 GSS

$PA Sample IMOD

end

whe
whe
whe
whe
whe
whe
whe
whe
whe
whe
whe
whe
whe
whe
oth

end
end

if

n "FNO=" = left(pwrparm,4) then afno=pwrparm

n "PRI=" = left(pwrparm,4) then apri=pwrparm

n "COPY=" = left(pwrparm,5) then acopy=pwrparm

n "DEST=" = left(pwrparm,5) then adest=pwrparm

n "DISP=" = left(pwrparm,5) then adisp=pwrparm

n "NODE=" = left(pwrparm,5) then anode=pwrparm

n "USER=" = left(pwrparm,5) then auser=pwrparm

n "CLASS=" = left(pwrparm,6) then aclass=pwrparm
n "SYSID=" = left(pwrparm,6) then asysid=pwrparm
n "REMOTE=" = left(pwrparm,7) then aremote=pwrparm
n "CMPACT=" = left(pwrparm,7) then acmpact=pwrparm
n "CRDATE=" = left(pwrparm,7) then acmpact=pwrparm
n "CRDATE<" = left(pwrparm,7) then acmpact=pwrparm
n "CRDATE>" = left(pwrparm,7) then acmpact=pwrparm
erwise do

if length(pwrparm)=1 then class=pwrparm
else do
if pjob="" then do
class=""
generic=" "

pjob=pwrparm

if substr(pjob,1,1)="*" then do
cjob=substr(pjob,2,8)
generic="*"

end

else do
pjob="*"]]pjob
cjob=substr(pjob,2,8)
generic="*"

end

cjob=strip(translate(cjob))

pjob=strip(translate(pjob,® °,"*+<="))

pjob="*"]Jword(pjob,1)

if pjob="*" then pjob="*

end
else do
it length(pwrparm)=1 then class=pwrparm
else error="INVALID JOBNAME*
end

end

error="" then do

/* issue power command */
if pjob="" then pjob="ALL"
z.=power (pque,pjob,class)
*

[*/
/* loop for each match on data */
/* ______________________________ */

do i=1 to z.0
ojob=substr(z.i,1,8)
ojnum=strip(substr(z.i,10,5))
match=1
if generic="*" then k=length(cjob)
else k=length(ojob)
do j=1 to k
if cjob-="" then leave j
cjobj=substr(cjob,j,1)
ojobj=substr(ojob,j,1)
if substr(ojob,j,1)-=cjobj then do
select;
when ojobj=cjobj then nop
when cjobj="+" then nop
when cjobj="<" then do
if ojobj<="A" | ojobj>="Z" then do

REXX User's Guide

A-33

$PHASE Sample IMOD

match=0
leave j

e
end

nd

when cjobj="="
if ojobj<="0" | ojobj>="9" then do

then do

match=0
leave j
end
end
otherwise do
match=0
leave j
end
end
end
end
/* ______________________________ */
/* perform checks on each match */
/* ______________________________ */
if match=1 then do
/* ______________________________ */
/* perform more checks */
/* ______________________________ -k/
/* pclass
pfno ppri pdisp
psysid
tnode fnode
tuser fuser*/
/* ______________________________ -k/
/* built power alter command */
/* ______________________________ -k/

say "Alter” substr(z.i,1,60)

pcmd="A "||pquel]l*,"|Istrip(ojob

if afno-=""
if acopy-=""
if adest-=""
if adisp-=""
if anode-=""
if auser-=""
if aclass-=""
if asysid-=""
if aremote-=""
if acmpact-=""

address console
end
else do
nop;
end
end
end
else do
say error
end

say “"done:*

exit

$PHASE Sample IMOD

then
then
then
then
then
then
then
then
then
then

D117, " lojnum
pcmd=pcmd] | ", " | |afno
pcmd=pcmd] | *, " | |acopy
pcmd=pcmd] | ", " | |adest
pcmd=pcmd] | ", " | |adisp
pcmd=pcmd] | ", " | |anode
pcmd=pcmd] | *, " | |auser
pcmd=pcmd] | ", " | laclass
pcmd=pcmd] |, " | |asysid
pcmd=pcmd] | ", " | |aremote
pcmd=pcmd] |, " | |Jacmpact

pcmd

/
/* $PHASE REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH

A-34 GSS

$PHASE Sample IMOD

/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed to display a phase name running in a */
/* partition specified or all partitions if no partition id is */
/* provided. BIM-FAQS/ASO is shipped with a A/R command "PHASE" */
/* in the FAQSASO command file. To use this exec type PHASE on the */
/* system or in op mode from the online interface or issue an */
/* SMSG from CMS to display the jobs on a target VSE. */
/* */
/* VSE */
/* FORMAT: PHASE pid */
/* */
/* PHASE asynoc command defined in a CONSOLE command */
/* definition file. */
/* pid Optional partition id, if not specified */
/* all partitions will be displayed. */
/* CMS */
/* FORMAT: SMSG machine ASO $PHASE pid */
/* */
/* machine is the VSE machine name */
/* AO is an identifier for BIM-FAQS/ASO to trigger */
/* that an IMOD name is the next blank delimited */
/* parm. */
/* $PHASE The IMOD to executed. */
/* pid Optional partition id, if not specified */
/* all partitions will be displayed. */
/ /
arg pid /* get pid */
pid = substr(strip(pid),1,2) /* parse partition id */
say "PHASE®" "-" date(w) "-" date() "-" time(Q)
if pid-="" then do /* user specified a PID */
x=phase(pid) /* get phase for specified pid */
if rc=0 then say pid x /* echo pid and phase */
/* else echo error */
else say "Phase failed rc="||rc "pid="]|pid
end /* end user specified pid */
else do /* user did not specify pid */
pid=pidlist("B") /* set possible pids */
J=length(pid)%2 /* calculate # of Pids in string */
do i =0 to j-1 /* loop for number of pids-1 */
y=substr(pid, i*2+1,2) /* calculate index to pid string */
x=phase(y) /* get phase for pid y */
if rc=0 then say y X /* echo pid and phase */
/* else echo error */
else say "Phase failed rc="||rc "pid="]|y
end /* end user did not specify pid */
end
exit

REXX User's Guide

A-35

$POST Sample IMOD

$POST Sample IMOD

$POWGET Sample IMOD

/ /
/* $POST REXX PROCEDURE: CREATED 08/10/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed post an event that is waiting on a */
/* predecessor condition of PROD=FAQSASO. */
/* BIM-FAQS/ASO is shipped with a A/R command "‘POST" */
/* in the FAQSASO command file. To use this exec type */
/* "POST evt" on the system console or in OP mode from the */
/* Online interface. This IMOD may also be invoked via SMSG */
/ /
arg event . /* cmd is set to the A/R cmd */
/* that invoked this IMOD and */
/* event is set to the event to */
/* be posted */
event = strip(substr(event,1,8)) /* set event to max of 8 */
say "POST®" "-" date(w) "-" date() "-" time()
x=post(event) /* post event */
/* report event status */
if rc=0 then say "Event" event "posted”
else say "POST" event "failed rc="]]|rc
exit
/ /
/* $powget REXX PROCEDURE: CREATED 6/06/01 BY KEN MEYER */
/* */
/* This IMOD is an example of use of the $powget POWER member read */
/* function available with BIM-FAQS (ASO & PCS). This routine will */
/* return up to 200 lines of a POWER RDR/LST/PUN member and display */
/* them on the console. This function can start on any page or line */
/* within the requested member. */
/* */
/* VSE */
/* FORMAT: $powget que jobname jobnumber suffix sysid "(" rest */
/* */
/* que name of the POWER queue to be searched. */
/* Jobname name of the POWER rdr, Ist, pun, etc */
/* member . */
/* number number of member that corresponds to the */
/* jJjobname described above. */
/* suffix segment number within the requested job */
/* number. */
/* sysid system id this member belongs to. */
/* rest search information consisting of: */
/* P=nnnnnn - where nnnnnn is the page or line */
/* L=nnnnnn number to search for */
/* C=nnnnnn number of lines to get */
/* */
/ /

parse arg qtype data
parse upper var data jobname number suffix sysid "(" rest

jobname=left(jobname,8," *)

if datatype(number)<>"NUM" then number=0

A-36 GSS

$POWGET Sample IMOD

it datatype(suffix)<>"NUM" then suffix=0
if datatype(sysid) <>"NUM" then sysid=0
if suffix=0 then suffix=""

if sysid=0 then sysid=""

flgl="00"x
f1g2="00"x
tnum="00000000"x
cnt=200

do while rest<>""
parse var rest p"="dat rest
if rest="" then parse var dat dat", "rest
select
when p="C" then do
if datatype(dat)="NUM®" then cnt=dat
end
when pos(p, "PL")<>0 then do
it datatype(dat)="NUM" then do
thum=d2c(dat,4)
if p="P" then flgl=bitor(flgl, "40"x)
else flgl=bitor(flgl, "80"x)
end
end
otherwise nop
end
end

flgl=bitor(flgl,“20"x)

x=substr(qtype,1,1) || left(Jobname,8)
if number-="" then x=x||d2c(number,?2)
else x=x]|"0000"x

if suffix-="" then x=x||d2c(suffix,1)
else x=x]|"00"x

if sysid-="" then x=x]|d2c(sysid,1)
else x=x]|"00"x

x=x]]"00"x /* class */
x=x| | tnum] | flgl] | flg2

z.=powget("0",x)

if rc<>0 then do
say "Member "||jobname number suffix]|" not found in" qtype
say "GAO607 OPEN FAILED RC="]]d2x(rc)
exit 999

end

eod=0
do whille eod=0 & cnt>0
call process
if eod=0 & cnt>0 then do
z.=powget("R")
if rc<>0 then do
if rc=9 then z.0=0
else do
say "GAO607 POWGET ROUTINE FAILED RC="]|d2x(rc)
exit 999
end
end
end
end

z.=powget("C")

exit 0

REXX User's Guide A-37

$POWGET Sample IMOD

process:

nlins=z.0

do i=1 to nlins while cnt>0
len=c2d(left(z.i,2,"00"%x))
flg=substr(z.i,5,1)

rin=len-5-1 /* remove hdr, ctl */
if bitand(flg, "80"x)="80"x then do

rin=rin-4

pIn=substr(z.i,len-3,4)
end

else pIn="00000000"x
pIn=right(c2d(pln),10)
if rIin<0 then exit 9999
ctl=substr(z.i,6,1)
rec=substr(z.i,7,rin)
if ctl="8B"x | ctl="FE"x then pIn="P="]]right(pln,8)
if bitand(flg,"01"x)="01"x then do /* ASA conversion? */
say c2x(ctl)
ctl="01"x
end
say c2x(ctl) rec *>" pln
if right(pln,2)<>" 0" then cnt=cnt-1
end
if nlins<200 then eod=1
return

A-38 GSS

$PWRCMD Sample IMOD

$PWRCMD Sample IMOD

/ /
/* $PWRCMD REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed to issue and retrieve power information on */
/* a cms user console via SMSG or on the system console via */
/* xpcc communication to POWER. */
/* To use this exec type PWRCMD on the system or in op mode from */
/* a BIM-FAQS/ASO online interface or issue an SMSG from CMS to */
/* display the jobs on a target VSE. */
/* */
/* VSE */
/* FORMAT: PWRCMD cmd */
/* */
/* cmd valid power cmd which may be issued via */
/* Xpcc */
/* CMS */
/* FORMAT: SMSG machine ASO $PWRCMD cmd */
/* */
/* machine is the VSE machine name */
/* AO is an identifier for BIM-FAQS/ASO to trigger */
/* that an IMOD name is the next blank delimited */
/* parm. */
/* $POWER The IMOD to be executed. */
/* cmd valid power cmd which may be issued via */
/* Xpcc */
/ /
arg pcmd /* pcmd is pwrcmd to issue */
ey
say "PWRCMD® que "-" date(w) "-" date() "-" time()
z .=pwrcmd(pcmd)
if rc=0 then do
do i=1 to z.0
say strip(z.i)
end
end
exit
$QT Sample IMOD
/ /
/* $QT REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* */
/* This IMOD is designed to display the time in English on the */
/* console. It calls the rexx IMOD $TIME to perform the action */
/* function. This shows a sample of the call function. */
/ /
call $TIME /* call the IMOD $TIME to get */
/* the TOD in English. */
/* this function return a string */
/* in result. */
say result /* display on console. */
exit
REXX User's Guide A-39

$READCON Sample IMOD

$READCON Sample IMOD

/ /
/* READCONS REXX PROCEDURE: CREATED 8/10/89 BY BOB SMITH */
/* READ from console */
/ /

say "READCONS® *-* date(w) "-" date() "-" time(Q
x=readcons("Enter some data, it will be echoed to the console®)

say "Data entered was -" X
exit

$REPLID Sample IMOD

/ /
/* REPLYID REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* Display job names and reply ids for a partition or */
/* all partitions if id is not specified. */
/* */
/* if cmd=SMSG then this was called via smsg from cms */
/* user, so we will reply to him via msg/msgnoh */
/ /
arg pid /* get pid

pid = strip(substr(strip(pid),1,2)) /* parse partition id

say "REPLY ID" "-" date(w) "-" date() "-" time(Q
x=replid(pid)
if rc=0 then do

if x=" " then do
say "There are no outstanding replies”
end
else do
pid=pidlist("B")|| "AR" /* set possible pids
J=length(pid)%2 /* calculate # of Pids in string
do i =0 to j-1 /* loop for number of pids-1
p=substr(pid, i*2+1,2)
x=replid(p)
name=jobname(p)
if x-=" " then do
say name X
x.=message(p,"2")
do j =1 to x.0
say X-j
end
end
end
end
end
else do

say "REPLID failed rc="||rc
end

$REPLY Sample IMOD

/ /

*/
*/
*/

A-40 GSS

$SCRIPT Sample IMOD

/* $REPLY REXX PROCEDURE: CREATED 03/18/90 BY BOB SMITH */

/* Modified 2/11/91 - check for multiple replies */

/* Modified 2/18/91 - support new args with asoenv call */

/* Modified 7/01/92 - display better message on multiple replies */

/* */

/* This IMOD is designed to reply to a partition based upon */

/* partition identifier rather than the actual reply id. */

/* BIM-FAQS/ASO is shipped with A/R commands "BG" "F1* ... "FB® */

/* in the FAQSASO command file. To use this exec type */

/* "BG xxxxx" on the system console or in OP mode from the */

/* online interface. It will reply to BG or QUEUE a reply */

/* for BG. To clear a QUEUED reply, type PRTY REPLY CLEAR pid */

/* on pre-vse/esa 2 systems, or type ASO REPLY CLEAR pid */

/ /

arg rep /* cmd is set to the A/R cmd */
/* that invoked this IMOD and */
/* rep is set to the reply */

x=asoenv()
parse var x . vers . imod . type pid
if vers="ES2" then faqcmd="ASO"
else faqcmd="PRTY"
if type-="$CMD" then do
say imod "only supported via an AR command®
exit
end
x=replid(pid)
if rc=0 then do
x=strip(x)
if length(x)>7 then do
y="There are multiple replies outstanding for"
y=y pid "which task do you want*®
z=""
do i = 1 to words(x)
z=z strip(substr(word(x,i),4,4))
end
x=readcons(y z)
if x=" " then do
say "The reply to® pid “"was ignored”
exit
end
end
x=strip(substr(x,4,4))
if x=" " then do
say ,
"There are no replies outstanding for® pid|]", the reply is queued”
ADDRESS CONSOLE faqcmd "REPLY® pid rep

end
else do
address console x rep

end
end
else do

say "REPLID FAILURE RC="d2x(rc)
end
exit /* exit IMOD */

$SCRIPT Sample IMOD

/ /
/* $script REXX PROCEDURE: CREATED 05/27/92 BY BOB SMITH */
/* */

REXX User's Guide A-41

$SCRIPT Sample IMOD

/* This IMOD is designed format help screens for online panels */
/* */
/* the following global variables must be set to run this processor. */
/* */
/* &si=1;&soffset="";&sfo="";&slen="" */
/* &d.="" */
/* */
/* x.1l ="_.ce.header" */
/* X.2 ="Specify which\job|name (from COMREG) " */
/* X.3 ="which must be executing when*® */
/* X.4 ="the message occurs." */
/* x.5 ="_.sk" */
/* x.6 ="The following special characters” */
/* X.7 ="are supported to allow for generics:" */
/* x.8 ="_.fo no* */
/* X.9 ="_sk" */
/* x.10=" + (plus sign) Matches any character” */
/* x.11=" = (equal sign) Matches any numeric character® */
/* x.12="_fo yes" */
tr ¢ :
/* X.13="¢ul* */
/* x.1l4="¢li.list element 1" */
/* x.15="¢li.list element 2* */
/* x.16="¢eul" */
.tr ¢ ¢
/* X.17="* */
/* /* ______________________________ */ */
/* /* Call script processor */ */
/* /* ______________________________ */ */
/* &si=1;&soffset="";&sfo="";&slen="" */
/* */
/* call $script ".init 30" */
/* */
/* do k = 1 to 100 while X.k—="" */
/* call $script x.k */
/* end */
/* */
/* call $script ".end” */
/* */
/*)BODY SCROLL */
/* Field Oriented Help */
/* | */
/*)TEXT &d. */
/> JLL $PF3=Return\ */
/* */
/ /
parse arg data
select
when word(data,1)=".init" then do
call init
end
when data=".fo no" then do
i=8&si+l
&sfo="n"
end
when data=".fo yes" then do
i=8&si+l
&sfo="y"
end
tr ¢ :
when data="¢ul® then do
i=&si+1
end

when substr(data,1,4)="¢li." then do
data =substr(data,5, length(data)-4)
data="@@*@" | |data

A-42 GSS

$SCRIPT Sample IMOD

call listbeg
end
when substr(data,l1,4)=".ce." then do
data =substr(data,5, length(data)-4)
i=&si
if &d.i—=="" then i=i+l
izi+l
call scenter
end
when data="c¢eul”™ then do
i=&si
if &d.i—=="" then i=i+l
&d.i=" *
i=i+l
data=""
call listend
end
.tr ¢ ¢
when word(data,1)=".sk" then do
i=&si
if &d.i—="" then i=i+l
&d.i=" "
izi+l
end
when word(data,1)=".end" then do
i=&si+1
&d.i=""
end
otherwise do
i=&si
call reform
end
end
&si=i
exit
init:
i=1
&slen=word(data,?2)
&soffset=""
&sfo="y"
&d.=""
a="n"
data=""
exit

reform:
if &sfo="n" then do
&d. i=data
izi+l
return
end
if data="" then return

if length(&d.i)+length(data) < &slen then do
if &d.i="" then &d.i=data
else &d.i=&d.1 data
data=""
return
end
do j=1 to words(data)
if length(&d.i)+wordlength(data,j) < &slen then do
if &d.i="" then &d.i=word(data,j)

REXX User's Guide A-43

$SCRIPT Sample IMOD

else &d.i=&d.i1 word(data,j)

end
else do
d=&d.i
select
when substr(d,1,4)="
d="@@@@" | | substr(d,5, length(d)-4)
d=reverse(d)
d=justify(d,&slen)
d=reverse(d)
d=" *| Isubstr(d,5, length(d)-4)
&d.i=d
end
when substr(d,1,3)="@@*" then do
d="@@@" | | substr(d, 4, length(d)-3)
d=reverse(d)
d=justify(d,é&slen)
d=reverse(d)
d=" *"||substr(d,4,length(d)-3)
&d.i=d
end
otherwise do
d=reverse(d)
d=justify(d,&slen)
&d.i=reverse(d)
end
end
i=i+l
&d. 1=&soffset| |word(data,j)
end
end
data=""
return
/* ____________________________ */
/* center: */
/* ____________________________ */
scenter:

I=length(&soffset)
if &d.i—="" then i=i+1

&d. i=&soffset| |center(data,&slen-1," *)

izi+l
return
/* ____________________________ */
/* listbeg: */
/* ____________________________ */
listbeg:
&soffset=" -

&d. i=data
return
/* ____________________________ */
/* listend: */
/* ____________________________ */
listend:

&soffset=""
if data—="" then do

if substr(data,1,3)="@@*" then do
data=" *"]|substr(data,4,length(data)-3)

end

&d. i=data

data=""
end

if substr(&d.i,1,3)="@@*" then do
&d.i=" *"]|substr(&d.i,4,length(&d.i)-3)

end
izi+l

A-44 GSS

$STATUS Sample IMOD

return

$STATUS Sample IMOD

/ /
/* $STATUS REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed to display the status of a job running in a */
/* partition specified or all partitions if no partition id is */

/* specified. BIM-FAQS/ASO is shipped with an A/R command "STATUS"™ */
/* in the FAQSASO command file. To use this exec type "STATUS" on */

/* the system console or in op mode from the online interface or */
/* issue an SMSG from CMS to display the status of jobs on a target */
/* VSE. */
/* */
/* VSE */
/* FORMAT: STATUS asynoc command defined in a CONSOLE command */
/* definition file. */
/* pid Optional partition id, if not specified */
/* all partitions will be displayed. */
/* CMS */
/* FORMAT: SMSG machine ASO $STATUS */
/* */
/* machine is the VSE machine name */
/* AO is an identifier for BIM-FAQS/ASO to trigger */
/* that an IMOD name is the next blank delimited */
/* parm. */
/* $STATUS The IMOD to executed. */
/ /

say "STATUS® "-" date(w) "-" date() "-" time(Q

pid=pidlist("B") || "AR" /* set possible pids */

J=length(pid)%2 /* calculate # of Pids in string */

doi =0 to j-1 /* loop for number of pids-1 */

say substr(pid,i*2+1,2) status(substr(pid,i*2+1,2))
end

exit

REXX User's Guide A-45

$SUBMIT Sample IMOD

$SUBMIT Sample IMOD

/

/* $SUBMIT REXX PROCEDURE: CREATED 06/25/01 BY Ken Meyer
/*

/* This IMOD shows an example of how to submit a JOB to POWER
/* using BIM-GSS REXX.

/
x.1l = ** $$ JOB JINM=TEST,CLASS=0,DISP=D"

X.2 = "* $$ LST CLASS=A"

X.3 = *// PAUSE TEST SUBMIT*®

X.4 = "/*"

X.5 = "/&"

X.6 = "* $$ EOJ"

X.7 =" b

x.0=7

it userfunc(Q)<>"BIM$SFPA" then if userfunc(''BIM$SFPA™)="" then do

say '"'LOAD FAILED FOR BIM$SFPA™
exit rc
end
z=pds("OPEN", "SUBMIT")
if rc<>0 then
say "OPEN Failed RC="]]d2x(rc)
do i =1 to x.0
z=pds("SUBA™" ,x.1)
end i
z=pds("CLOSE", "SUBMIT™)
if rc<>0 then do
say "CLOSE FAILED RC="d2x(rc)
end
exit rc

A-46 GSS

$TO Sample IMOD

$TO Sample IMOD

/ /
/* $TO REXX PROCEDURE: CREATED 03/18/90 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */

/* This IMOD is designed to send replies or commands to another */
/* machine under vm via SMSG. BIM-FAQS/ASO is shipped with an */

/* A/R command ">" in the FAQSASO command file. To use this */
/* exec type "> machine data" on the system console or in OP */
/* mode from the online interface. */
/ /
arg tuser imod cmd /* cmd is set to the A/R cmd */
/* that invoked this IMOD and */
/* rep is set to the reply */
x=asoenv() /* get environment */
parse var x type . /* see $args for description */

if type-="$CMD" Then do
say "$TO imod only supported vis AR command”
exit
end

if imod="REPLY" then imod="$CMSREP"
if substr(imod,1,1)-="$%" then do

cmd=imod cmd
imod="$CMSREP"

end
z.=cp("SMSG*" tuser "ASO" imod cmd) /* all smsg vse target machine */
exit /* exit IMOD */
$VTAM Sample IMOD

/ /
/* $VTAM REXX PROCEDURE: CREATED 10/16/90 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* */
/* This IMOD is designed to issue and display a VTAM command */
/* BIM-FAQS/ASO is shipped with a A/R command "$VTAM" in the FAQSASO */
/* command file. To use this exec type $VTAM on the system */
/* or in op mode from the online interface or issue an SMSG */
/* from CMS to display the VTAM information from the target VSE. */
/* */
/* VSE */
/* FORMAT: $VTAM cmd */
/* */
/* CMS */
/* FORMAT: SMSG machine ASO $VTAM cmd */
/* ASO machine JOBACCT pid */
/* */
/* machine is the VSE machine name */
/* ASO is an identifier for BIM-FAQS/ASO to trigger */
/* that an IMOD name is the next blank delimited */
/* parm. */
/* $VTAM The IMOD to executed. */
/* cmd command to display VTAM information */
/ /
arg vtamcmd /* get vtamcmd */
vtamcmd = strip(translate(vtamcmd))

x=asoenv() /* get environment */
parse var X type user /* see $args for description */

REXX User's Guide A-47

$WAIT Sample IMOD

say "$VTAM® "-" date(w) "-" date() "-" time(Q)

z.=vtam(vtamcmd, "5%) /* issue vtam command and wait 5 */
if rc=0 then do
do i=1 to z.0 /* loop for number of returned msg*/
Z. |—str|p(z i,T) /* strip trailing blanks */
say z. * echo to console */
end
end
else do

say "VTAM error rc=" rc
end
exit

SWAIT Sample IMOD

/ /
/* WAIT REXX PROCEDURE: CREATED 7/26/89 BY BOB SMITH */
/* updated 02/20/91 support new asoenv call */
/* This IMOD will issue a wait for n seconds where n */
/* is the passed parameter, */
/ /
arg wtime .

wtime = strip(wtime)

say "wait® "-" date(w) "-" date() "-" time()
z=wait(wtime)

say “wait rc="]]rc

exit

SWAKEUP Sample IMOD

/* $wakeup REXX PROCEDURE: CREATED 7/20/89 BY BOB SMITH */
this IMOD will issue wakeup message every minute, */
/* quarter hour, half hour, or hour based on parameter */
/ /
arg type .
hour=0
quarter=0
half=0
do forever
c8=time()
m=substr(c8,4,2)+0
s=substr(c8,7,2)+0
m=59-m /* calculate number of min left */
s=59-s /* wake up on the minute */
select
when type="MIN" then do
m=0
minute=minute+1
count=minute
end
when type="HALF" then do
if m>29 then m=m-30
half=half+1
count=half
end

A-48 GSS

$WAKEUP Sample IMOD

when type="QUARTER" then do

if m>14 then m=m-15
if m>14 then m=m-15
if m>14 then m=m-15
quarter=quarter+1
count=quarter
end

otherwise do
hour=hour+1
count=hour
type="HOUR"

end

end

s=s+(60*m)

say "wait® s%60 "minutes and® s-((s%60)*60) "seconds”

s=value(s)

x=wait(s)

call $TIME /* call the IMOD $TIME to get */
/* the TOD in English. */
/* this function return a string */
/* in result. */

say "Wakeup:" type "count="]]|count result

end

exit

REXX User's Guide A-49

$WAKEUP Sample IMOD

A-50 GSS

Glossary
Basic Terms

Assignment

Variables can be assigned data by the use of ARG,
PARSE, PULL, and ADDRESS environments. You can
also use an equal sign (=) to assign a symbol to the
value of an expression.

Binary string

A binary string is a string of 0's and 1's, grouped in four
characters that can be delimited by one or more blanks.
The first string of characters is assumed to have a length
of 4, and is right justified with zeros added to align the
string to four characters. The string must be delimited
on the left with a single quote (') or double quote ("),
and on the right with a 'B, 'b, "B, or "b.

Comment

'A comment is delimited with a /* and a */. Comments
are free-form, appearing anywhere and spanning any
number of lines. Comments are useful for documenting
IMODs and for commenting out sections of code.

Expression

An expression is an instance of one or more strings,
symbols, operators, or functions. Expressions are
evaluated left to right with respect to parentheses and
operator precedence.

Hexadecimal string

A hexadecimal string is a string made up of the
characters 0-9, A-F, a-f, grouped in pairs delimited by
one or more blanks. The first character need not be
paired, and a 0 is added on the left to pair this character.
The string must be delimited on the left with a single
quote (') or double quote ("), and on the right with an 'X,
'x, "X, or "x.

String

A string is a group of characters delimited by single
quotes ('') or double quotes (" "). You can delimit the
string with double quotes if you include a single quote
in the string, or vice versa. When this is not possible,
place two single or two double quotes together to
denote a single character. The null string is used many
times in REXX and is shown as "".

Symbol

A symbol is a variable, constant, or keyword made up
of the following characters: A-Z, a-z, 0-9, period (.),
exclamation mark (!), underscore (_), at sign (@),
pound sign (#), question mark (?), and dollar sign ($).
Symbols are translated to uppercase before use. For
example, the symbols BOB, Bob, and bob are identical.

Template
A template is a list of symbols delimited by blanks
and/or patterns. For example: cmd '(' argl arg2

Variables
BIM's implementation of REXX contains four types of
variables:

Simple variables
Stem variables
Global variables
Global stem variables

Simple variables

Simple variables are symbols whose values can be
changed during the execution of a REXX IMOD. Simple
variables can be up to 50 characters long and can be
assigned values up to 4096 bytes. These variables are
local to the currently executing REXX IMOD and cannot
be referenced by other IMODs or procedures. Called
procedures can, however, access these simple variables
via the EXPOSE command on the procedure definition.

Stem variables

Stem variables are composed of a stem symbol and a
period (.), denoting a family of stems that can be
cleared, initialized, set, or dropped. You can assign or
reference any member of a stem family by appending a
symbol to the family name. This symbol can be a
constant or a variable. A variable is useful for accessing
all members of a family when the members are named
by numbers and the 0 member contains the number of
members in the family.

Global variables
Global variables are symbols whose values can be
changed during the execution of a REXX IMOD. Global

REXX User's Guide Glossary-1

Global stem variables

variables can be up to 8 characters long and can be
assigned values up to 105 bytes, including the variable
name. Global variables are prefixed with an ampersand
(&%). Because of the nature of REXX, global variables
cannot be concatenated through abuttal; they must be
concatenated with a blank or | |.

Global variables can be used only for REXX IMODs
executed via the FAQSAO task. These IMODs include
those triggered using SMSGs, console messages, console
commands, online commands, BIM-FAQS/PCS
commands, and GEM (Global Event Manager). Global
variables are kept until you assign them to null or drop
them. They are kept on disk and in storage, and will
survive an IPL.

Because of the nature of the FAQSAO task multi-
threading IMODs, you can be assured of the state of a
global variable until you perform a function that has an
implied wait--such as CP(), WAIT(), POWER(),
PWRCMD, MESSAGE(), or MSG(). At these implied
waits, other IMODS are run, and the values of your
global variables are subject to change.

Global stem variables

Global stem variables function like normal stem
variables but according to the rules of global variables.
The only difference between global variables and global
stem variables is their life expectancy: Since global stem
variables are not written to disk, they do not survive
end-of-job.

Glossary-2 GSS

Index

$

$ADDRESS IMOD, sample A-1, A-7
$ARG IMOD, sample A-1, A-8
$BEEPASO IMOD, sample A-1, A-9
$CICSREP IMOD, sample A-1, A-11
$CMSREP IMOD, sample A-1, A-12
$CONSOLE IMOD, sample A-2, A-14
$CP IMOD, sample A-2, A-14
$CPUUSE IMOD, sample A-2, A-15
$CYCLE IMOD, sample A-2, A-17
$DC IMOD, sample A-2, A-21

$EQJ IMOD, sample A-2, A-22
$GETVIS IMOD, sample A-22
$GWTVIS IMOD, sample A-2

$JOB IMOD, sample A-3, A-24
$JOBACCT IMOD, sample A-3, A-24
$JOBNAME IMOD, sample A-3, A-26
$JOBNREP IMOD, sample A-3, A-27
$JOBTIME IMOD, sample A-3, A-29
$LOG IMOD, sample A-4, A-29
$MESSAGE IMOD, sample A-4, A-29
$MSG IMOD, sample A-4, A-31
$NODESET IMOD, sample A-4, A-31
$PA IMOD, sample A-4, A-32
$PHASE IMOD, sample A-5, A-35
$POST IMOD, sample A-5, A-36
$POWGET IMOD, sample A-5, A-36
$PWRCMD IMOD, sample A-5, A-39

$QT IMOD, sample A-5, A-39
$READCON IMOD, sample A-5, A-40
$REPLID IMOD, sample A-6, A-40
$REPLY IMOD, sample A-6, A-41
$SCRIPT IMOD, sample A-6, A-42
$STATUS IMOD, sample A-6, A-45
$SUBMIT IMOD, sample A-6, A-46
$TO IMOD, sample A-6, A-47
$VTAM IMOD, sample A-7, A-47
$WAIT IMOD, sample A-48
$WAKEUP IMOD, sample A-48

= (REXX editor line command) 1-21

A

ABBREV 5-2
ABS 5-3

Adding ASO files
REXX IMOD 1-9

ADDRESS AO 4-1
ADDRESS CARD 4-3
ADDRESS CICS 4-4
ADDRESS CONSOLE 4-5
ADDRESS DISK 4-5, 4-6
ADDRESS EVENT 4-8
ADDRESS EXPLORE 4-9
ADDRESS OUTPUT 4-13
ADDRESS PDATE 4-14

REXX User's Guide

Index-1

ADDRESS PDS 4-15

ADDRESS POWER 4-16

ADDRESS PROGRAM 4-17

ADDRESS SCHEDULE 4-18

ADDRESS SYS 4-19

Advanced command-line commands 1-21

ARG template 3-2

B2C(binary string 5-10

B2X(binary string 5-11

Basic command-line commands 1-15
BITAND 5-7

BITOR 5-8

BITXOR 5-9

C

Floating point numbers 2-17
INTERPRET 2-15

Labels 2-15

MAX 2-16

MIN 2-16

Signal 2-16

Symbols 2-16

TRACEs 2-16

UPPER 2-17

Directory lists
REXX IMOD 1-7

DO 3-3
DROP 3-5
DUMPSTG 2-17

C2D 2-17

CALL function <expression<,expression>...> 3-3
CENTER(string, length<,pad>) 5-12
CENTRE(string, length<,pad>) 5-13
CLUSTER(parms) 5-14

CP(cmd,ASIS) 5-16

CPUID() 5-18

D

Editing a REXX IMOD 1-12

Editing ASO files
REXX IMOD 1-10

Editor screens
REXX IMOD 1-10

ELSE 3-8

Enabling REXX procedure support 1-3
Enabling REXX support 1-3

Entering commands on the command line 1-14

EXIT <expression> 3-6

DATE 2-17

Deleting ASO files
REXX IMOD 1-9

Differences btw. BIM and IBM REXX
C2D 2-17
DATE 2-17
DUMPSTG 2-17

FAQSAO task
main task 1-4

Files
REXX IMOD 1-7

Filing an IMOD 1-29
Floating point numbers 2-17

Function help
accessing 2-6

Function lengths 2-15

Functions

Index-2 GSS

ABBREYV 5-2

ABS 5-3

ADDRESS 5-4

ADDRESS AO 4-1

ADDRESS CARD 4-3

ADDRESS CICS 4-4

ADDRESS CONSOLE 4-5
ADDRESS DISK 4-5, 4-6

ADDRESS EVENT 4-8

ADDRESS EXPLORE 4-9
ADDRESS OUTPUT 4-13
ADDRESS PDATE 4-14

ADDRESS PDS 4-15

ADDRESS POWER 4-16

ADDRESS PROGRAM 4-17
ADDRESS SCHEDULE 4-18
ADDRESS SYS 4-19

ARG 5-5

ASOENYV 5-6

B2C(binary string) 5-10

B2X(binary string) 5-11

BITAND 5-7

BITOR 5-8

BITXOR 5-9

C2D(string<,n>) 5-18

C2X(string) 5-19

CENTER(string, length<,pad>) 5-12
CENTRE(string, length<,pad>) 5-13
CLUSTER(parms) 5-14
COMPARE(stringl,string2,pad) 5-15
COPIES(string,n) 5-16
CP(cmd,ASIS) 5-16

CPUID() 5-18

D2C(number<,n>) 5-24
D2X(number<,n>) 5-25
DATATYPE(string<,type>) 5-19
DATE(<option<,date<,/B’>>>) 5-21
DELSTR(string,n<length>) 5-22, 5-23
DIGITS() 5-23

ERRORTEXT(n) 5-25
FIND(string,tgt) 5-26

FORM() 5-27

FORMAT (number,<integer>,<decimal>) 5-27
FUZZ() 5-29

GETVIS(pid) 5-29
INDEX(haystack,needle,start) 5-31
INSERT (new,target,<n>,<length>,<pad>) 5-32
JOBACCT('CPU') 5-34
JOBACCT('PAG') 5-34
JOBACCT(pid) 5-33
JOBNAME(pid) 5-35

JUSTIFY (string,length,pad) 5-36
LASTPOS(needle haystack,start) 5-37
LEFT (string,length,pad) 5-38

LENGTH(string) 5-39
LIBR(function,parms) 5-40
LINESIZE() 5-40
LISTCAT(parms) 5-41
MAX 5-41

MESSAGE 5-42

MIN 5-43

MSG 5-44

OVERLAY 5-45
PHASE 5-46

PIDLIST 5-47

POS 5-48

POST 5-49

POWER 5-49
PWRCMD 5-51
QUEUED 5-52
RANDOM 5-52
READCONS 5-54
REPLID 5-55
REVERSE 5-56

REXX 2-1

RIGHT 5-56
SESSION 5-57

SIGN 5-58
SOURCELINE 5-58
SPACE 5-59

STATUS 5-60

STRIP 5-61

SUBSTR 5-62
SUBWORD 5-63
SYMBOL 5-63

TIME 5-64
TRANSLATE 5-65
TRUNC 5-65

user 2-2

USERID 5-66
VALUE 5-67

VERIFY 5-68
VSAM(function, parms) 5-69
VSSPACE(parms) 5-69
VTAM 5-70

WAIT 5-71

WORD 5-72
WORDINDEX 5-73
WORDLENGTH 5-73
WORDPOS 5-74
WORDS 5-75

X2B 5-76

X2C 5-77

X2D 5-77

XRANGE 5-76

REXX User's Guide

Index-3

G LEAVE <symbol> 3-8

Length
f ion 2-1
GSFAQS commands 1;;15120.;15 >
DISABLE AO 14 symbol 2-15

LIBR(function,parms) 5-40
I LISTCAT(parms) 5-41

Listing ASO files
IF 3-6 REXX IMOD 1-7

Initialization and configuration Loop control variables 2-15
IMOD initialization 1-5

Instructions
DO 3-3 M

DROP 3-5
ELSE 3-8
EXIT <expression> 3-6 MAX 2-16, 5-41
IF 3-6 MESSAGE 5-42
ITERATE <symbol> 3-7 N 21 A
LEAVE <symbol> 3-8 MIN 2-16, 5-43

NOP 3-9
NUMERIC 3-9
OTHERWISE 3-9
PARSE 3-10

PROCEDURE <expose <(> variable list <)> > 3-

11

PULL 3-11
PUSH 3-12
QUEUE 3-12
RETURN 3-12
REXX 2-1
SAY 3-13
SELECT 3-14
SIGNAL 3-14
THEN 3-7
TRACE

All/Commands/Error/Fail/ Intermediate/ Label
s/Normal/Off/Results 3-15

UPPER 3-15
WHEN 3-16

INTERPRET 2-15
ITERATE <symbol> 3-7

Modifying ASO files
REXX IMOD 1-9

MSG 5-44

N

NOP 3-9
NUMERIC 3-9

O

Label lengths 2-15
Labels 2-15

Online help
accessing 2-4
example 2-3
REXX language 2-3

OTHERWISE 3-9
OVERLAY 5-45

PARSE 3-10

Index-4 GSS

Performance hints 2-18

PF-key functions
using 1-26

PHASE 5-46
PIDLIST 5-47
Prefix-area commands 1-13

Procedures
REXX 1-3

PULL 3-11
PUSH 3-12

Q

QUEUE 3-12

READCONS 5-54
REPLID 5-55
RESULT 3-2
RETURN 3-12
REVERSE 5-56

REXX
definition 1-1
how to edit 1-12
SDL/SVA Requirements 1-2
use of 1-1

REXX compiler 1-29
error processing 1-30

REXX editor
basic line commands 1-15
command-line commands 1-14
PF-key functions 1-26

REXX editor line commands
=1-21
Add 1-15
Backward 1-15
Bottom 1-16
Case 1-16
Change 1-17
DELete 1-17

Down 1-18
DUPlicate 1-21
FFile 1-22

File 1-19

GET 1-22
Input 1-23
Next 1-18
Overlay Column 1-23
PDS 1-24

Quit 1-24
Recall 1-21
SAVE 1-19
Search 1-19
SSAVE 1-25
TAB 1-25

TOP 1-16
Up1-15

REXX IMOD
directory list 1-7
Editor screen 1-12
filing 1-29
format 1-11
saving 1-29

REXX IMOD file
adding 1-9
deleting 1-9
editing 1-12
editor 1-10
executing 1-9
listing 1-7
modifying 1-9
REXX language 2-1
functions in general 2-1, 2-2

instructions 2-1
online help 2-3

REXX support
enabling 1-3

RIGHT 5-56

SAY 3-13

SDL/SVA Requirements 1-2
SELECT 3-14

Signal 2-16

SIGNAL 3-14

REXX User's Guide

Index-5

SOURCELINE 5-58
SPACE 5-59
STATUS 5-60
STRIP 5-61

SUBSTR 5-62
SUBWORD 5-63
SYMBOL 5-63
Symbol lengths 2-15
Symbols 2-16

\%

VALUE 5-67
Variable 2-11
VERIFY 5-68

VSAM(function, parms) 5-69

VSSPACE(parms) 5-69
VTAM 5-70

W

Terminating BIM-FAQS/ASO 1-4
THEN 3-7
TIME 5-64

TRACE
All/Commands/Error/Fail / Intermediate/Labels/N
ormal/Off/Results 3-15

TRACESs 2-16
TRANSLATE 5-65
TRUNC 5-65

u

WAIT 5-71

WHEN 3-16

WORD 5-72
WORDINDEX 5-73
WORDLENGTH 5-73
WORDPOS 5-74
WORDS 5-75

X

UPPER 2-17, 3-15
USERID 5-66

X2B 5-76
X2C 5-77
X2D 5-77
XRANGE 5-76

Index-6 GSS

	Contents
	About This Guide
	Purpose
	Organization
	 GSS Publications
	Related Publications

	Diagnostic Procedures
	Collecting Diagnostic Data
	Interpreting Diagnostic Data
	Calling Technical Support

	Using the REXX Editor and Compiler
	REXX Overview
	What Is REXX?
	Using REXX
	SDL/SVA Requirements
	Running REXX Procedures from JCL
	Enabling REXX Procedures

	Enabling FAQSAO
	 Running FAQSAO
	Running FAQSVSPO
	Defining the Application ID
	Terminating FAQSAO
	Terminating BIM-FAQS/ASO

	Initializing the FAQSAO REXX Processor
	Accessing the ASO IMOD Initialization Directory List

	IMOD Configuration Screen
	Accessing the IMOD Configuration Screen

	Editing REXX IMODs
	REXX IMOD File Directory List
	 Accessing the REXX IMOD File Directory List
	Actions on the REXX IMOD File Directory List

	REXX IMOD Editor Screen
	REXX IMOD Format

	Editing on the REXX IMOD Editor Screen
	Overtyping Data
	Entering Commands in the Prefix Area
	Prefix-Area Commands
	CC, DD, and MM Commands
	C#, CC, M#, and MM Commands

	Entering Command-Line Commands
	 Basic Commands
	Add
	Purpose
	Syntax
	Usage Notes
	Example

	Backward or Up
	Purpose
	Syntax
	Usage Notes
	Example

	Bottom or TOP
	Purpose
	Syntax

	Case
	Purpose
	Syntax
	Usage Notes

	Change
	Purpose
	Syntax
	Usage Notes
	Example

	DELete
	Purpose
	 Syntax
	Usage Notes
	Example

	Down or Next
	Purpose
	Syntax
	Example

	 FILE
	Purpose
	Syntax
	Usage Notes

	SAVE
	Purpose
	Syntax
	Usage Notes

	Search
	Purpose
	Syntax
	Usage Notes
	Example

	 Advanced Commands
	= (Recall)
	Purpose
	Syntax
	Usage Notes

	DUPlicate
	Purpose
	Syntax
	Usage Notes

	 FFile
	Purpose
	Syntax
	Usage Notes

	GET
	Purpose
	Syntax
	Examples
	Usage Notes

	Input
	Purpose
	Syntax
	Usage Notes

	Overlay Column
	Purpose
	Syntax
	Usage Notes

	PDS
	Purpose
	Syntax
	Usage Notes

	Quit
	Purpose
	Syntax
	Usage Notes

	SSAVE
	Purpose
	Syntax
	Usage Notes

	TAB
	Purpose
	Syntax
	Usage Notes

	 Using PF Keys While Editing
	Overview of PF Keys
	 Detailed Summary of PF Keys

	 Compiling the REXX IMOD
	Saving an IMOD
	Filing an IMOD
	Determining the Member/User Name
	Performing Error Processing

	REXX Language
	Overview
	REXX Instructions
	REXX Functions
	User Functions

	 Using Online Help
	Direct Help
	 Accessing Online Help from REXX IMOD Editor
	 Accessing Additional Help from Help Screen
	 BIM REXX Help Menu
	 Function Help

	 REXX General Usage
	Comments
	Symbols
	Strings
	Binary Strings
	Hexadecimal Strings
	Expressions
	Assignments

	 REXX Operators
	Prefix Operators
	Boolean Operators
	Algebraic Operators
	Comparators

	 Variables
	Simple Variables
	Stem Variables
	 Stem Variable Assignments

	Global Variables
	Global Stem Variables

	How Arguments Are Passed
	Default Argument Passing Method
	If a Message Triggered an IMOD
	 If a Command Triggered an IMOD
	If an SMSG Triggered an IMOD

	 Differences Between BIM REXX and IBM REXX
	INTERPRET
	Loop Control Variables
	Labels
	Signal
	MAX and MIN
	Symbols
	TRACEs
	C2D
	Floating Point Numbers
	UPPER
	DATE
	DUMPSTG

	 Performance Hints
	Global Variables
	Stem Variables
	Assignments = vs ==
	Long Strings
	SUBSTR
	Numbers
	Comments
	Statements
	Arithmetic Items

	REXX Instructions
	ADDRESS environment <command>
	Purpose
	Example

	ARG template
	Purpose
	Example

	RESULT
	Purpose
	Example

	 CALL function <expression<,expression>...>
	Purpose
	Example

	DO
	Purpose
	Syntax
	Operands
	Examples: Simple Do Groups
	Examples: Simple Do Loops
	 Examples: Complex Do Loops

	DROP
	Purpose
	Example

	 EXIT <expression>
	Purpose
	Example

	IF
	Purpose
	Example

	ITERATE <symbol>
	Purpose
	Examples

	THEN
	Purpose
	Example

	 ELSE
	Purpose
	Example

	LEAVE <symbol>
	Purpose
	Example

	NOP
	Purpose
	Example

	NUMERIC
	Purpose
	Example

	OTHERWISE
	Purpose
	Example

	PARSE
	Purpose
	Examples

	 PROCEDURE <expose <(> variable list <)> >
	Purpose
	Examples

	PULL
	Purpose

	PUSH
	Purpose
	Example

	QUEUE
	Purpose
	Example

	RETURN
	Purpose

	SAY
	Purpose
	Environment
	Example

	 SELECT
	Purpose
	Example

	SIGNAL
	Purpose
	Example

	 TRACE
	All/Commands/Error/Fail/Intermediate/Labels/Normal/Off/ Results
	Purpose
	Example

	UPPER
	Purpose
	Example

	WHEN
	Purpose
	Example

	REXX ADDRESS Environments
	ADDRESS AO
	Syntax
	Environment
	Operands
	Return Codes
	Sample Commands

	ADDRESS CARD
	Syntax
	Environment
	Operand
	Return Codes
	Sample Commands
	Sample Program

	ADDRESS CICS
	Syntax
	Environment
	Operands
	Return Code
	Sample Commands
	Sample Program

	ADDRESS CONSOLE
	Return Codes
	Sample Commands
	Sample Program

	ADDRESS DISK
	Syntax
	Environment
	Operands
	Return Codes
	Sample Commands
	Sample Program

	ADDRESS EPIC
	Return Code
	Sample Commands

	ADDRESS EVENT
	Syntax
	Operands
	 Return Codes
	Sample Commands
	Sample Program

	ADDRESS EXPLORE
	Syntax
	Operands
	prodid
	qualifiers
	CMD and BUFFERSIZE
	Sample Program

	 ADDRESS OUTPUT
	Syntax
	Environment
	Operand
	Return Code
	Sample Commands
	Sample Program

	 ADDRESS PDATE
	Operands
	Return Codes

	 ADDRESS PDS
	Environment
	Operands
	Return Code
	Sample Command
	Sample Program

	ADDRESS POWER
	Return Codes
	Sample Commands
	Sample Program

	ADDRESS PROGRAM
	Environment
	Operands
	Return Codes
	Sample Commands

	ADDRESS SCHEDULE
	Operand
	Return Codes
	Sample Command
	Sample Program

	 ADDRESS SYS
	Operand
	Return Codes
	Sample Commands
	Sample Program

	REXX Functions
	 ABBREV(pattern,string,length)
	Purpose
	Operands
	Examples
	Sample Program

	ABS(number)
	Purpose
	Operands
	Examples
	Sample Program
	Error Conditions

	 ADDRESS()
	Purpose
	Operands
	Examples

	 ARG (<n<,option>>)
	Purpose
	Operands
	Examples
	Sample Program

	 ASOENV ()
	Purpose
	Environment
	Operands
	Sample Program

	BITAND(string1,string2,pad)
	Purpose
	Operands
	Examples
	Sample Program

	BITOR(string1,string2,pad)
	Purpose
	Operands
	Examples
	Sample Program

	 BITXOR(string1,string2,pad)
	Purpose
	Operands
	Examples
	Sample Program

	 B2C(binary-string)
	Purpose
	Operands
	Examples
	Sample Program
	Error Conditions

	B2X(binary-string)
	Purpose
	Operands
	Examples
	Sample Program
	Error Conditions

	CENTER(string,length<,pad>)
	Purpose
	Operands
	Examples
	Sample Program

	 CENTRE(string,length<,pad>)
	Purpose
	Operands
	Examples
	Sample Program

	 CLUSTER(parms)
	Purpose
	Operands
	Examples

	 COMPARE(string1,string2,pad)
	Purpose
	Operands
	Examples
	Sample Program

	 COPIES(string,n)
	Purpose
	Operands
	Examples

	CP(cmd,ASIS)
	Purpose
	Operands
	Return Codes
	Sample Program
	Error Conditions

	 CPUID()
	Purpose
	Operand
	Sample Program

	C2D(string<,n>)
	Purpose
	Operands
	Examples

	C2X(string)
	Purpose
	Operand
	Examples

	DATATYPE(string<,type>)
	Purpose
	Operands
	Examples
	Sample Program

	 DATE(<option<,date<,’B’>>>)
	Purpose
	Operands
	 Examples
	Sample Program

	DELSTR(string,n<length>)
	Purpose
	Operands
	Examples

	DELWORD(string,n,length)
	Purpose
	Operands
	Examples

	DIGITS()
	Purpose
	Operand
	Example
	 Sample Program

	D2C(number<,n>)
	Purpose
	Operands
	Examples
	Error Conditions

	D2X(number<,n>)
	Purpose
	Operands
	Examples
	Error Conditions

	ERRORTEXT(n)
	Purpose
	Operand
	Example
	Sample Program

	FIND(string,tgt)
	Purpose
	Operands
	Examples

	 FORM()
	Purpose
	Operand
	Example
	Sample Program

	FORMAT(number,<integer>,<decimal>)
	Purpose
	Operands
	 Examples
	Sample Program

	FUZZ()
	Purpose
	Operand
	Example

	GETVIS(pid)
	Purpose
	Operand
	Return Codes
	Example
	Sample Program

	 INDEX(haystack,needle,start)
	Purpose
	Operands
	Examples
	Sample Program

	INSERT(new,target,<n>,<length>,<pad>)
	Purpose
	Operands
	Examples
	Sample Program

	JOBACCT(pid)
	Purpose
	Operand
	Return Codes
	Sample Program

	JOBACCT('CPU') / JOBACCT('PAG')
	Purpose
	Return Codes
	Sample Program

	JOBNAME(pid)
	Purpose
	Operand
	Return Codes
	Example
	Sample Program

	JUSTIFY(string,length,pad)
	Purpose
	Operand
	Examples
	Sample Program

	LASTPOS(needle,haystack,start)
	Purpose
	Operands
	Examples
	Sample Program

	LEFT(string,length,pad)
	Purpose
	Operands
	Examples
	Sample Program

	LENGTH(string)
	Purpose
	Operand
	Examples
	Sample Program

	LIBR(function,parms)
	Purpose
	Operand
	Examples

	LINESIZE()
	Purpose
	Operand
	Example
	Sample Program

	LISTCAT(parms)
	Purpose
	Operand
	Examples

	MAX(number,number,...)
	Purpose
	Operand
	Examples
	Error Conditions

	MESSAGE(<pid>,<count>,<scan>,<start>)
	Purpose
	Operand
	Return Codes
	 Sample Program
	Error Conditions

	MIN(number,number,...)
	Purpose
	Operand
	Examples

	MSG(mid<,start>)
	Purpose
	Operands
	Return Codes
	Sample Program
	Error Conditions

	OVERLAY(new,tgt,<n>,<len>,<pad>)
	Purpose
	Operands
	Examples

	PHASE(pid)
	Purpose
	Operand
	Return Codes
	Sample Program

	PIDLIST(<type>)
	Purpose
	Operand
	Return Codes
	Examples
	Sample Program

	POS(needle,haystack,start)
	Purpose
	Operands
	Examples
	Sample Program

	POST(event)
	Purpose
	Operand
	Return Codes
	Sample Program

	POWER(<queue>,<jobname>,<class>)
	Purpose
	Operand
	Return Codes
	Sample Program
	Error Conditions

	PWRCMD(cmd)
	Purpose
	Operand
	Return Codes
	Sample Program
	Error Conditions

	QUEUED()
	Purpose

	RANDOM(min,max,seed)
	Purpose
	Operand
	Examples
	Sample Program

	 READCONS(<data>)
	Purpose
	Operand
	Return Codes
	Sample Program

	REPLID(pid)
	Purpose
	Operand
	Return Codes
	Examples
	Sample Program

	REVERSE(string)
	Purpose
	Examples
	Sample Program

	RIGHT(string,len,pad)
	Purpose
	 Operand
	Examples
	Sample Program

	SESSION(args)
	Purpose
	Examples

	SIGN(number)
	Purpose
	Operand
	Examples
	Error Conditions

	SOURCELINE(<n>)
	Purpose
	Operand
	Examples
	Sample Program
	Error Conditions

	SPACE(string,n,pad)
	Purpose
	Operands
	 Examples
	Sample Program

	STATUS(pid)
	Purpose
	Operands
	Return Codes
	 Examples
	Sample Program

	STRIP(string,option,char)
	Purpose
	Operands
	 Examples

	SUBSTR(string,start<,end><pad>)
	Purpose
	Operands
	Examples

	 SUBWORD(string,n<,length>)
	Purpose
	Operands
	Examples

	SYMBOL(symbol)
	Purpose
	Operand
	Examples

	TIME(option)
	Purpose
	Operand
	Examples

	TRANSLATE(string,tblo,tbli,pad)
	Purpose
	Operand
	Examples

	TRUNC(number<,n>)
	Purpose
	Operand
	Examples

	USERID()
	Purpose
	Operand

	 VALUE(name<,newvalue>)
	Purpose
	Operands
	Sample Program

	VERIFY(string,ref<,MatchNomatch>,<start>)
	Purpose
	Operands
	Examples

	VSAM(function, parms)
	Purpose
	Operand
	Examples

	VSSPACE(parms)
	Purpose
	Operand
	Examples

	 VTAM(‘cmd’,<time>)
	Purpose
	Operands
	Return Codes
	Sample Program
	Error Conditions

	WAIT(sec)
	Purpose
	Operand
	Return Code
	Sample Program

	WORD(string,n)
	Purpose
	Operands
	Examples
	Sample Program

	 WORDINDEX(string,n)
	Purpose
	Operands
	Examples
	Sample Program

	WORDLENGTH(string,n)
	Purpose
	Operands
	Examples
	Sample Program

	WORD POS(string,target<,start)
	Purpose
	Operands
	Examples
	Sample Program

	WORDS(string)
	Purpose
	Operand
	Examples
	Sample Program

	XRANGE(start,end)
	Purpose
	Operands
	Examples

	X2B(hstring)
	Purpose
	Operand
	Examples

	X2C(hstring)
	Purpose
	Operand
	Examples
	Error Conditions

	X2D(hstring,n)
	Purpose
	Operands
	Examples
	Error Conditions

	Sample REXX IMODs
	Sample IMODs
	$ADDRESS
	$ARG
	$BEEPASO
	$CICSREP
	$CMSREP
	$CONSOLE
	$CP
	$CPUUSE
	$CYCLE
	$DC
	$EOJ
	$GETVIS
	$JOB
	$JOBACCT
	$JOBNAME
	$JOBNREP
	$JOBTIME
	$LOG
	$MESSAGE
	$MSG
	$NODESET
	$PA
	$PHASE
	$POST
	$POWGET
	$PWRCMD
	$QT
	$READCON
	$REPLID
	$REPLY
	$SCRIPT
	$STATUS
	$SUBMIT
	$TO
	$VTAM

	$ADDRESS Sample IMOD
	 $ARG Sample IMOD
	 $BEEPASO Sample IMOD
	 $CICSREP Sample IMOD
	$CMSREP Sample IMOD
	 $CONSOLE Sample IMOD
	$CP Sample IMOD
	$CPUUSE Sample IMOD
	$CYCLE Sample IMOD
	 $DC Sample IMOD
	$EOJ Sample IMOD
	$GETVIS Sample IMOD
	 $JOB Sample IMOD
	$JOBACCT Sample IMOD
	 $JOBNAME Sample IMOD
	 $JOBNREP Sample IMOD
	 $JOBTIME Sample IMOD
	$LOG Sample IMOD
	$MESSAGE Sample IMOD
	$MSG Sample IMOD
	$NODESET Sample IMOD
	 $PA Sample IMOD
	$PHASE Sample IMOD
	 $POST Sample IMOD
	$POWGET Sample IMOD
	 $PWRCMD Sample IMOD
	$QT Sample IMOD
	$READCON Sample IMOD
	$REPLID Sample IMOD
	$REPLY Sample IMOD
	$SCRIPT Sample IMOD
	$STATUS Sample IMOD
	 $SUBMIT Sample IMOD
	 $TO Sample IMOD
	$VTAM Sample IMOD
	$WAIT Sample IMOD
	$WAKEUP Sample IMOD

	Basic Terms
	Index

	Installation Guide: REXX User's Guide
	release #: Version 5 Release 3A
	Overview Field:

